A novel diode featuring an annular cathode and a ring-shaped focusing electrode and operating in a low guiding magnetic field (GMF) has been developed. It was found that the breakdown threshold for a focusing electrode made of titanium was 140 kV/cm higher than a stainless steel electrode for the same operating conditions. Comparison of the diode current measured by a Rogowski coil and the beam current measured by a Faraday cup at the collector indicated that an intense relativistic electron beam was transmitted effectively even in a GMF of as low as 0.21 T. In addition, a photo of the cathode plasma and the targeting results indicated that the emission uniformity of the graphite cathode was satisfactory.

1.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
(
Taylor and Francis
,
New York
,
2007
).
2.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
Tsinghua University Press
,
Beijing
,
2006
).
3.
S. H.
Gold
and
G. S.
Nusinovich
,
Rev. Sci. Instrum.
68
,
3945
(
1997
).
4.
J.
Sun
,
P.
Wu
,
S. F.
Huo
,
W. B.
Tan
,
H.
Shao
,
C. C.
Chen
, and
G. Z.
Liu
,
IEEE Trans. Plasma Sci.
42
,
2179
(
2014
).
5.
G.
Shafir
,
M.
Kreif
,
J. Z.
Gleizer
,
S.
Gleizer
,
Y. E.
Krasik
,
A. V.
Gunin
,
O. P.
Kutenkov
,
I. V.
Pegel
, and
V. V.
Rostov
,
J. Appl. Phys.
118
,
193302
(
2015
).
6.
V. G.
Baryshevsky
,
N. A.
Belous
,
A. M.
Belov
,
A. A.
Gurinovich
,
E. A.
Gurinovich
,
E. A.
Gurnevich
, and
P. V.
Molchanov
,
IEEE Trans. Plasma Sci.
44
,
1103
(
2016
).
7.
P.
Wu
,
J.
Sun
, and
Y.
Teng
,
J. Appl. Phys.
122
,
224506
(
2017
).
8.
J. P.
Ling
,
J. D.
Zhang
,
J. T.
He
,
L.
Wang
, and
B. F.
Deng
,
Rev. Sci. Instrum.
85
,
084702
(
2014
).
9.
V. V.
Rostov
,
A. V.
Gunin
,
R. V.
Tsygankov
,
I. V.
Romanchenko
, and
M. I.
Yalandin
,
IEEE Trans. Plasma Sci.
46
,
33
(
2018
).
10.
F. C.
Dang
,
X. P.
Zhang
,
J.
Zhang
,
J. C.
Ju
, and
H. H.
Zhong
,
J. Appl. Phys.
121
,
123305
(
2017
).
11.
J. R.
Pierce
,
Theory and Design of Electron Guns
, 2nd ed. (
Van Nostrand
,
New York
,
1954
).
12.
E. M.
Totmeninov
,
S. A.
Kitsanov
, and
P. V.
Vykhodtsev
,
IEEE Trans. Plasma Sci.
39
,
1150
(
2011
).
13.
E. M.
Tot’meninov
,
A. S.
Stepchenko
,
V. V.
Rostov
, and
A. I.
Klimov
,
Tech. Phys.
63
,
581
584
(
2018
).
14.
L. M.
Guo
,
T.
Shu
,
Z. Q.
Li
,
J. C.
Ju
,
A. K.
Li
,
Y. W.
Fan
,
J. M.
Gao
, and
L. B.
Yan
,
J. Appl. Phys.
124
,
103302
(
2018
).
15.
X. L.
Wu
,
C. H.
Chen
,
Y.
Teng
,
P.
Wu
,
Y. C.
Shi
,
D. W.
Yang
, and
J.
Sun
,
AIP Adv.
9
(
6
),
065006
(
2019
).
16.
G. A.
Farrall
,
M.
Owens
, and
F. G.
Hudda
,
J. Appl. Phys.
46
,
610
(
1975
).
17.
J. H.
Booske
,
Phys. Plasmas
15
,
055502
(
2008
).
18.
J. P.
Ling
,
J. D.
Zhang
,
J. T.
He
, and
T.
Jiang
,
Phys. Plasmas
21
,
023114
(
2014
).
19.
J. L.
Xie
,
C. H.
Chen
,
C.
Chang
,
C.
Wu
,
Y. C.
Shi
,
Y. B.
Cao
,
Z. M.
Song
, and
Y. C.
Zhang
,
Phys. Plasmas
25
,
023303
(
2018
).
20.
F. R.
Schwirzke
,
IEEE Trans. Plasma Sci.
19
,
690
(
1991
).
21.
J.
Zhou
,
D. G.
Liu
,
C.
Liao
, and
Z. H.
Li
,
IEEE Trans. Plasma Sci.
37
,
2002
(
2009
).
22.
R. Z.
Xiao
,
Y. Z.
Lin
,
Z. M.
Song
,
C. H.
Chen
, and
G. Z.
Liu
,
IEEE Trans. Plasma Sci.
35
,
1456
(
2007
).
23.
T.
Shao
,
W.
Yang
,
C.
Zhang
,
Z.
Niu
,
P.
Yan
, and
E.
Schamiloglu
,
Appl. Phys. Lett.
105
,
071607
(
2014
).
You do not currently have access to this content.