Understanding of the Schottky barriers formed at metal contact-InAs nanowire interfaces is of great importance for the development of high-performance InAs nanowire nanoelectronic and quantum devices. Here, we report a systematical study of InAs nanowire field-effect transistors (FETs) and the Schottky barrier heights formed at the contact-nanowire interfaces. The InAs nanowires employed are grown by molecular beam epitaxy and are high material quality single crystals, and the devices are made by directly contacting the nanowires with a series of metals of different work functions. The fabricated InAs nanowire FET devices are characterized by electrical measurements at different temperatures and the Schottky barrier heights are extracted from the measured temperature and gate-voltage dependences of the channel current. We show that although the work functions of the contact metals are widely spread, the Schottky barrier heights are determined to be distributed over 35–55 meV, showing a weak but not negligible dependence on the metals. The deduced Fermi level in the InAs nanowire channels is found to be in the band gap and very close to the conduction band. The physical origin of the results is discussed in terms of Fermi level pinning by the surface states of the InAs nanowires and a shift in pinned Fermi level induced by the metal-related interface states.

1.
Q.
Li
,
S. Y.
Huang
,
D.
Pan
,
J. Y.
Wang
,
J. H.
Zhao
, and
H. Q.
Xu
,
Appl. Phys. Lett.
105
,
113106
(
2014
).
2.
S. A.
Dayeh
,
D. P. R.
Aplin
,
X.
Zhou
,
P. K. L.
Yu
,
E. T.
Yu
, and
D.
Wang
,
Small
3
,
326
(
2007
).
3.
M. T.
Björk
,
A.
Fuhrer
,
A. E.
Hansen
,
M. W.
Larsson
,
L. E.
Fröberg
, and
L.
Samuelson
,
Phys. Rev. B
72
,
201307(R)
(
2005
).
4.
S.
Csonka
,
L.
Hofstetter
,
F.
Freitag
,
S.
Oberholzer
, and
C.
Schönenberger
,
Nano Lett.
8
,
3932
(
2008
).
5.
E. H.
Rhoderick
and
R. H.
Williams
,
Metal-Semiconductor Contacts
, 2nd ed. (
Clarendon Press
,
Oxford, UK
,
1988
).
6.
L. Ö.
Olsson
,
C. B. M.
Andersson
,
M. C.
Håkansson
,
J.
Kanski
,
L.
Ilver
, and
U. O.
Karlsson
,
Phys. Rev. Lett.
76
,
3626
(
1996
).
7.
F.
Léonard
and
A. A.
Talin
,
Nat. Nanotechnol.
6
,
773
(
2011
).
8.
A.
Razavieh
,
P. K.
Mohseni
,
K.
Jung
,
S.
Mehrotra
,
S.
Das
,
S.
Suslov
,
X.
Li
,
G.
Klimeck
,
D. B.
Janes
, and
J.
Appenzeller
,
ACS Nano
8
,
6281
(
2014
).
9.
J.
Kim
,
J.-H.
Yun
,
C. H.
Kim
,
Y. C.
Park
,
J.
Yeon Woo
,
J.
Park
,
J.-H.
Lee
,
J.
Yi
, and
C.-S.
Han
,
Nanotechnology
21
,
115205
(
2010
).
10.
S.
Takahashi
,
R. S.
Deacon
,
K.
Yoshida
,
A.
Oiwa
,
K.
Shibata
,
K.
Hirakawa
,
Y.
Tokura
, and
S.
Tarucha
,
Phys. Rev. Lett.
104
,
246801
(
2010
).
11.
A.
Pfund
,
I.
Shorubalko
,
R.
Leturcq
, and
K.
Ensslin
,
Appl. Phys. Lett.
89
,
252106
(
2006
).
12.
M. A.
Khayer
and
R. K.
Lake
,
J. Appl. Phys.
107
,
014502
(
2010
).
13.
A. D. K.
Finck
,
D. J.
Van Harlingen
,
P. K.
Mohseni
,
K.
Jung
, and
X.
Li
,
Phys. Rev. Lett.
110
,
126406
(
2013
).
14.
A.
Das
,
Y.
Ronen
,
Y.
Most
,
Y.
Oreg
,
M.
Heiblum
, and
H.
Shtrikman
,
Nat. Phys.
8
,
887
(
2012
).
15.
D. B.
Suyatin
,
C.
Thelander
,
M. T.
Bjork
,
I.
Maximov
, and
L.
Samuelson
,
Nanotechnology
18
,
105307
(
2007
).
16.
M. J. L.
Sourribes
,
I.
Isakov
,
M.
Panfilova
, and
P. A.
Warburton
,
Nanotechnology
24
,
045703
(
2013
).
17.
Y.-L.
Chueh
,
A. C.
Ford
,
J. C.
Ho
,
Z. A.
Jacobson
,
Z.
Fan
,
C.-Y.
Chen
,
L.-J.
Chou
, and
A.
Javey
,
Nano Lett.
8
,
4528
(
2008
).
18.
R.
Oxland
,
S. W.
Chang
,
Xu
Li
,
S. W.
Wang
,
G.
Radhakrishnan
,
W.
Priyantha
,
M. J. H.
van Dal
,
C. H.
Hsieh
,
G.
Vellianitis
,
G.
Doornbos
,
K.
Bhuwalka
,
B.
Duriez
,
I.
Thayne
,
R.
Droopad
,
M.
Passlack
,
C. H.
Diaz
, and
Y. C.
Sun
,
IEEE Electron Device Lett.
33
,
501
(
2012
).
19.
T.
Shi
,
M.
Fu
,
D.
Pan
,
Y.
Guo
,
J.
Zhao
, and
Q.
Chen
,
Nanotechnology
26
,
175202
(
2015
).
20.
A. C.
Ford
,
S. B.
Kumar
,
R.
Kapadia
,
J.
Guo
, and
A.
Javey
,
Nano Lett.
12
,
1340
(
2012
).
21.
D.
Pan
,
M.
Fu
,
X.
Yu
,
X.
Wang
,
L.
Zhu
,
S.
Nie
,
S.
Wang
,
Q.
Chen
,
P.
Xiong
,
S.
Molnár
, and
J. H.
Zhao
,
Nano Lett.
14
,
1214
(
2014
).
22.
S. M.
Sze
and
K. K.
Ng
, “
Metal-semiconductor contacts
,” in
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
New York, USA
,
2007
), Chap. 3.
23.
Z. Y.
Zhang
,
C. H.
Jin
,
X. L.
Liang
,
Q.
Chen
, and
L.-M.
Peng
,
Appl. Phys. Lett.
88
,
073102
(
2006
).
24.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
25.
R. T.
Tung
,
Appl. Phys. Rev.
1
,
011304
(
2014
).
26.
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Lett.
91
,
123123
(
2007
).
27.
K. F.
Wojciechowski
,
Phys. Rev. B
60
,
9202
(
1999
).
You do not currently have access to this content.