This paper presents the design of a novel flexure–based vertical (or Z–axis) nanopositioning stage driven by a piezoelectric actuator (PZT), which is capable of executing large travel range. The proposed stage consists mainly of a hybrid displacement amplification mechanism (DAM), a motion guiding mechanism, and a decoupling mechanism. The hybrid DAM with amplification ratio of 12.1 is developed to transfer the transverse motion of the PZT actuator into the vertical motion. The motion guiding mechanism is introduced to avoid cross coupling at the output end. The decoupling mechanism can significantly reduce the cross coupling at the driving end to protect the PZT. The stiffness and dynamics of the proposed stage are improved by these mechanisms. Analytical modeling and finite element analysis (FEA) are then adopted to optimize dimensions of the stage. Finally, a prototype of the stage is fabricated and tested for verification. The results of static and dynamic tests show that the proposed stage is capable of vertical travel range of 214 μm with resolution of 8 nm, and the first two resonance frequencies are 205 Hz and 1206 Hz, respectively. Cross coupling tests under various lateral loads (0 g–1000 g) show that the maximum variances of the lateral and angular cross couplings are less than 0.78 μm and 95 μrad, respectively, indicating good decoupling capability. In addition, the low–profile structure of the stage is well suited to be used in limited vertical space.

1.
B. J.
Kenton
,
A. J.
Fleming
, and
K. K.
Leang
,
Rev. Sci. Instrum.
82
,
123703
(
2011
).
2.
B. J.
Kenton
and
K. K.
Leang
,
IEEE/ASME Trans., Mechatronics
17
,
356
(
2012
).
3.
T.
Mohammad
and
S.
Salisbury
,
Int. J. Precis. Eng. Manuf.
13
,
1581
(
2012
).
4.
T.
Mohammad
and
S. P.
Salisbury
,
ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
(
American Society of Mechanical Engineers
,
2010
), pp.
379
385
.
5.
Y.
Yong
,
S.
Moheimani
,
B. J.
Kenton
, and
K.
Leang
,
Rev. Sci. Instrum.
83
,
121101
(
2012
).
6.
K.-B.
Choi
,
J. J.
Lee
, and
S.
Hata
,
Sens. Actuators, A
161
,
173
(
2010
).
7.
J.-L.
Ha
,
Y.-S.
Kung
,
S.-C.
Hu
, and
R.-F.
Fung
,
Sens. Actuators, A
125
,
565
(
2006
).
8.
N. B.
Hubbard
,
M. L.
Culpepper
, and
L. L.
Howell
,
Appl. Mech. Rev.
59
,
324
(
2006
).
9.
D.
Shu
,
E.
Nazaretski
,
J.
Kim
,
H.
Yan
,
K.
Lauer
,
B.
Mullany
,
D.
Kuhne
,
J.
Maser
, and
Y. S.
Chu
,
J. Phys.: Conf. Ser.
463
,
012029
(
2013
).
10.
D.
Shu
,
J.
Maser
,
Y.
Chu
,
H.
Yan
,
E.
Nazaretski
,
S.
O’Hara
,
S.
Kearney
,
J.
Anton
,
J.
Quintana
, and
Q.
Shen
,
AIP Conf. Proc.
1365
,
144
147
(
2011
).
11.
S. S.
Linden
and
D. C.
Sullivan
,
Radiology
171
,
570
(
1989
).
12.
H.-J.
Lee
,
H.-C.
Kim
,
H.-Y.
Kim
, and
D.-G.
Gweon
,
Rev. Sci. Instrum.
84
,
115103
(
2013
).
13.
H.
Kim
,
J.
Kim
,
D.
Ahn
, and
D.
Gweon
,
IEEE Trans. Nanotechnol.
12
,
234
(
2013
).
14.
S.-Q.
Lee
and
D.-G.
Gweon
,
Precis. Eng.
24
,
24
(
2000
).
15.
U.-X.
Tan
,
W. T.
Latt
,
C. Y.
Shee
, and
W. T.
Ang
,
IEEE/ASME Trans., Mechatronics
16
,
773
(
2011
).
16.
F.-J.
Shiou
,
C.-J.
Chen
,
C.-J.
Chiang
,
K.-J.
Liou
,
S.-C.
Liao
, and
H.-C.
Liou
,
Meas. Sci. Technol.
21
,
054007
(
2010
).
17.
S. H.
Chang
and
B. C.
Du
,
Rev. Sci. Instrum.
69
,
1785
(
1998
).
18.
S.
Choi
,
S.
Han
, and
Y.
Lee
,
Smart Mater. Struct.
14
,
222
(
2005
).
19.
J.-J.
Kim
,
Y.-M.
Choi
,
D.
Ahn
,
B.
Hwang
,
D.-G.
Gweon
, and
J.
Jeong
,
Mech. Mach. Theory
50
,
109
(
2012
).
20.
R.
Yang
,
M.
Jouaneh
, and
R.
Schweizer
,
Precis. Eng.
18
,
20
(
1996
).
21.
S.
Choi
,
S.
Han
,
Y.
Han
, and
B.
Thompson
,
Mech. Mach. Theory
42
,
1184
(
2007
).
22.
Q.
Xu
and
Y.
Li
,
Mech. Mach. Theory
46
,
183
(
2011
).
23.
S.
Awtar
and
A. H.
Slocum
,
J. Mech. Des.
129
,
816
(
2007
).
24.
N.
Lobontiu
and
E.
Garcia
,
Comput. Struct.
81
,
2797
(
2003
).
25.
N.
Lobontiu
,
Compliant Mechanisms: Design of Flexure Hinges
(
CRC Press
,
2010
).
26.
Z.
Wen
,
Z.
Dong
,
P.
Liu
, and
H.
Ding
,
Rev. Sci. Instrum.
85
,
035106
(
2014
).
You do not currently have access to this content.