Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂPN−1 sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.

1.
D. G.
Gross
,
T.
Piran
, and
S.
Weinberg
,
Two Dimensional Quantum Gravity and Random Surfaces
(
World Scientific
,
Singapore
,
1992
).
2.
S.
Safram
,
Statistical Thermodynamics of Surfaces Interface and Membranes
(
Addison-Wesley
,
Massachusetts
,
1994
).
3.
A.
Davydov
,
Solitons in Molecular Systems
(
Kluwer
,
NewYork
,
1999
).
4.
R.
Rajaraman
, “
ℂPn solitons in quantum Hall systems
,”
Eur. Phys. B
28
,
157
162
(
2002
).
5.
G.
Landolfi
, “
On the Canham-Helfrich membrane model
,”
J. Phys. A: Math. Theor.
36
,
4699
(
2003
).
6.
W. J.
Zakrzewski
,
Low Dimensional Sigma Models
(
Hilger
,
Bristol
,
1989
).
7.
A. M.
Grundland
and
İ.
Yurduşen
, “
On analytic descriptions of two-dimensional surfaces associated with the ℂPN−1 models
,”
J. Phys. A: Math. Theor.
42
,
172001
(
2009
).
8.
P. P.
Goldstein
and
A. M.
Grundland
, “
Invariant recurrence relations for ℂPN−1 models
,”
J. Phys. A: Math. Theor.
43
,
265206
(
2010
).
9.
F.
Hélein
,
Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
(
Birkhäuser, Basel
,
2001
).
10.
N.
Manton
and
P.
Sutcliffe
,
Topological Solitons
(
Cambridge University Press
,
NewYork
,
2004
).
11.
S.
Post
and
A. M.
Grundland
, “
Analysis of ℂPN−1 sigma models via projective structures
,”
Nonlinearity
25
,
1
36
(
2012
).
12.
A. M.
Grundland
,
A.
Strasburger
, and
W. J.
Zakrzewski
, “
Surfaces immersed in su(N + 1) Lie algebras obtained from the ℂPN sigma models
,”
J. Phys. A: Math. Gen.
39
,
9187
9214
(
2006
).
13.
V.
Hussin
,
İ.
Yurduşen
, and
W. J.
Zakrzewski
, “
Canonical surfaces associated with projectors in Grassmannian sigma models
,”
J. Math. Phys.
51
,
103509
(
2010
).
14.
L.
Delisle
,
V.
Hussin
, and
W. J.
Zakrzewski
, “
Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions
,”
J. Geom. Phys.
66
,
24
36
(
2013
).
15.
L.
Delisle
,
V.
Hussin
, and
W. J.
Zakrzewski
, “
Constant curvature solutions of Grassmannian sigma models:(2) Non-holomorphic solutions
,”
J. Geom. Phys.
71
,
1
10
(
2013
).
16.
B.
Konopelchenko
and
I.
Taimanov
, “
Constant mean curvature surfaces via an integrable dynamical system
,”
J. Phys. A: Math. Gen.
29
,
1261
1265
(
1996
).
17.
R.
Carroll
and
B.
Konopelchenko
, “
Generalized Weierstrass-Enneper inducing conformal immersions and gravity
,”
Int. J. Mod. Phys. A
11
,
1183
1216
(
1996
).
18.
B.
Konopelchenko
and
G.
Landolfi
, “
Generalized Weierstrass representation for surfaces in multi-dimensional Riemannian spaces
,”
Stud. Appl. Math.
104
,
129
169
(
1999
).
19.
J.
Bolton
,
G. R.
Jensen
,
M.
Rigoli
, and
L. M.
Woodward
, “
On conformal minimal immersions of S2 into ℂPn
,”
Math. Ann.
279
,
599
620
(
1988
).
20.
F. W.
Warner
,
Foundations of Differentiable Manifolds and Lie Groups
(
Springer-Verlag
,
New York
,
1983
).
21.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
, 2nd ed. (
Springer-Verlag
,
New York
,
1989
).
22.
A.
Gray
,
Modern Differential Geometry of Curves and Surfaces
(
CRC Press
,
Florida
,
1993
).
23.
X. X.
Jiao
and
J. G.
Peng
, “
Pseudo-holomorphic curves in complex Grassmann manifolds
,”
Trans. Am. Math. Soc.
355
,
3715
3726
(
2003
).
24.
X. X.
Jiao
and
J. G.
Peng
, “
Classification of holomorphic two-spheres with constant curvature in the complex Grassmannians G2,5
,”
Differ. Geo. Its Appl.
20
,
267
277
(
2004
).
25.
A. M.
Grundland
and
L.
Snobl
, “
Description of surfaces associated with Grassmannian sigma models on Minkowski space
,”
J. Math. Phys.
46
,
083508
(
2005
).
26.
F.
Jie
,
J.
Xiaoxiang
, and
X.
Xiaowei
, “
Construction of homogeneous minimal 2-spheres in complex Grassmannians
,”
Acta Math. Sci.
31
,
1889
1898
(
2011
).
27.
C.
Peng
and
X.
Xu
, “
Minimal two-spheres with constant curvature in the complex Grassmannians
,”
Israel J. Math.
202
,
1
20
(
2014
).
28.
C.
Peng
and
X.
Xu
, “
Classification of minimal homogeneous two-spheres in the complex Grassmann manifold G(2, n)
,”
J. de Mathématiques Pures et Appliquées
103
,
374
399
(
2015
).
29.
E.
Witten
, “
Supersymmetric form of the nonlinear sigma model in two dimensions
,”
Phys. Rev. D
16
,
2991
2994
(
1977
).
30.
A.
D’Adda
,
M.
Luscher
, and
P.
Di Vecchia
, “
Confinement and chiral symmetry breaking in CPN−1 models with quarks
,”
Nucl. Phys. B
152
,
125
144
(
1979
).
31.
K.
Fujii
,
T.
Koikawa
, and
R.
Sasaki
, “
Classical solutions for supersymmetric Grassmannian sigma models in two dimensions. I
,”
Prog. Theor. Phys.
71
,
388
394
(
1984
).
32.
V.
Hussin
and
W. J.
Zakrzewski
, “
Susy CPN−1 model and surfaces in ℝN2−1
,”
J. Phys. A: Math. Gen.
39
,
14231
(
2006
).
33.
J. F.
Cornwell
,
Group Theory in Physics: Supersymmetries and Infinite-Dimensional Algebras
,
Techniques of Physics
Vol.
3
(
Academic
,
New York
,
1989
).
34.
A. J.
MacFarlane
, “
Generalization of σ-models and CpN models, and instantons
,”
Phys. Lett. B
82
,
239
241
(
1979
).
35.
A. M.
Din
,
J.
Lukierski
, and
W. J.
Zakrzewski
, “
General classical solutions of a supersymmetric non-linear coupled boson-fermion model in two dimensions
,”
Nucl. Phys. B
194
,
157
171
(
1982
).
You do not currently have access to this content.