Infrared photodissociation (IRPD) spectra of mass-selected 4-aminobenzonitrile-(water)n cluster cations, ABN+-(H2O)n with n ≤ 4, recorded in the N–H and O–H stretch ranges are analyzed by quantum chemical calculations at the M06-2X/aug-cc-pVTZ level to determine the evolution of the initial microhydration process of this bifunctional aromatic cation in its ground electronic state. IRPD spectra of cold clusters tagged with Ar and N2 display higher resolution and allow for a clear-cut structural assignment. The clusters are generated in an electron impact source, which generates predominantly the most stable isomers. The IRPD spectra are assigned to single isomers for n = 1–3. The preferred cluster growth begins with sequential hydration of the two acidic NH protons of the amino group (n = 1–2), which is followed by attachment of secondary H2O ligands hydrogen-bonded to the first-shell ligands (n = 3–4). These symmetric and branched structures are more stable than those with a cyclic H-bonded solvent network. Moreover, in the size range n ≤ 4 the formation of a solvent network stabilized by strong cooperative effects is favored over interior ion hydration which is destabilized by noncooperative effects. The potential of the ABN+-H2O dimer is characterized in detail and supports the cluster growth derived from the IRPD spectra. Although the N–H bonds are destabilized by stepwise microhydration, which is accompanied by increasing charge transfer from ABN+ to the solvent cluster, no proton transfer to the solvent is observed for n ≤ 4.

1.
E. A.
Meyer
,
R. K.
Castellano
, and
F.
Diederich
,
Angew. Chem. Int. Ed.
42
,
1210
(
2003
);
L. M.
Salonen
,
M.
Ellermann
, and
F.
Diederich
,
Angew. Chem.
50
,
4808
(
2011
);
J. C.
Ma
and
D. A.
Dougherty
,
Chem. Rev.
97
,
1303
(
1997
);
[PubMed]
A. S.
Mahadevi
and
G. N.
Sastry
,
Chem. Rev.
113
,
2100
(
2013
);
[PubMed]
K. S.
Kim
,
P.
Tarakeshwar
, and
J. Y.
Lee
,
Chem. Rev.
100
,
4145
(
2000
);
[PubMed]
B.
Brutschy
,
Chem. Rev.
100
,
3891
(
2000
);
[PubMed]
K.
Müller-Dethlefs
and
P.
Hobza
,
Chem. Rev.
100
,
143
(
2000
);
[PubMed]
P.
Hobza
and
K.
Müller-Dethlefs
,
Non-Covalent Interactions
(
The Royal Society of Chemistry
,
Cambridge
,
2010
);
J. P.
Schermann
,
Spectroscopy and Modelling of Biomolecular Building Blocks
(
Elsevier
,
Amsterdam
,
2008
).
3.
V. P.
Denisov
,
B. H.
Jonsson
, and
B.
Halle
,
Nat. Struct. Biol.
6
,
253
(
1999
);
[PubMed]
S. K.
Pal
and
A. H.
Zewail
,
Chem. Rev.
104
,
2099
(
2004
);
[PubMed]
Y.
Levy
and
J. N.
Onuchic
,
Annu. Rev. Biophys. Biomol. Struct.
35
,
389
(
2006
);
[PubMed]
L. Y.
Zhang
,
L. J.
Wang
,
Y. T.
Kao
,
W. H.
Qiu
,
Y.
Yang
,
O.
Okobiah
, and
D. P.
Zhong
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18461
(
2007
);
[PubMed]
M.
Chaplin
,
Nat. Rev. Mol. Cell Biol.
7
,
861
(
2006
);
[PubMed]
P.
Ball
,
Nature (London)
478
,
467
(
2011
);
N. V.
Nucci
,
M. S.
Pometun
, and
A. J.
Wand
,
Nat. Struct. Mol. Biol.
18
,
245
(
2011
);
[PubMed]
G.
Otting
,
E.
Liepinsh
, and
K.
Wuthrich
,
Science
254
,
974
(
1991
).
[PubMed]
4.
O.
Dopfer
,
A.
Patzer
,
S.
Chakraborty
,
I.
Alata
,
R.
Omidyan
,
M.
Broquier
,
C.
Dedonder
, and
C.
Jouvet
,
J. Chem. Phys.
140
,
124314
(
2014
).
5.
N.
Solcà
and
O.
Dopfer
,
J. Phys. Chem. A
107
,
4046
(
2003
);
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Phys. Chem. Chem. Phys.
5
,
1137
(
2003
);
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Chem. Phys. Lett.
399
,
412
(
2004
).
6.
S.
Djafari
,
G.
Lembach
,
H.-D.
Barth
, and
B.
Brutschy
,
Z. Phys. Chem.
195
,
253
(
1996
);
T.
Maeyama
and
N.
Mikami
,
J. Phys. Chem.
95
,
7197
(
1991
);
U.
Lorenz
,
N.
Solcà
, and
O.
Dopfer
,
Chem. Phys. Lett.
406
,
321
(
2005
).
7.
V.
Brenner
,
S.
Martrenchard-Barra
,
P.
Millie
,
C.
Dedonder-Lardeux
,
C.
Jouvet
, and
D.
Solgadi
,
J. Phys. Chem.
99
,
5848
(
1995
).
8.
S.
Chakraborty
,
A.
Patzer
,
A.
Lagutschenkov
,
J.
Langer
, and
O.
Dopfer
,
Int. J. Mass Spectrom.
297
,
85
(
2010
);
S.
Chakraborty
,
A.
Patzer
,
A.
Lagutschenkov
,
J.
Langer
, and
O.
Dopfer
,
Chem. Phys. Lett.
485
,
49
(
2010
).
9.
K.
Kleinermanns
,
C.
Janzen
,
D.
Spangenberg
, and
M.
Gerhards
,
J. Phys. Chem. A
103
,
5232
(
1999
).
10.
T.
Ebata
,
A.
Fujii
, and
N.
Mikami
,
Int. J. Mass Spectrom. Ion Processes
159
,
111
(
1996
).
11.
T.
Nakanaga
and
F.
Ito
,
Chem. Phys. Lett.
348
,
270
(
2001
).
12.
Y.
Inokuchi
,
K.
Ohashi
,
Y.
Honkawa
,
N.
Yamamoto
,
H.
Sekiya
, and
N.
Nishi
,
J. Phys. Chem. A
107
,
4230
(
2003
).
13.
Y.
Honkawa
,
Y.
Inokuchi
,
K.
Ohashi
,
N.
Nishi
, and
H.
Sekiya
,
Chem. Phys. Lett.
358
,
419
(
2002
).
14.
M.
Alauddin
,
J. K.
Song
, and
S. M.
Park
,
Int. J. Mass Spectrom.
314
,
49
(
2012
).
15.
M.
Schmies
,
A.
Patzer
,
S.
Kruppe
,
M.
Miyazaki
,
S.
Ishiuchi
,
M.
Fujii
, and
O.
Dopfer
,
ChemPhysChem
14
,
728
(
2013
).
16.
R. G.
Keesee
and
A. W.
Castleman
 Jr.
,
J. Phys. Chem. Ref. Data
15
,
1011
(
1986
).
17.
N.
Solcà
and
O.
Dopfer
,
J. Phys. Chem. A
105
,
5637
(
2001
).
18.
T.
Nakamura
,
M.
Schmies
,
A.
Patzer
,
M.
Miyazaki
,
S.
Ishiuchi
,
M.
Weiler
,
O.
Dopfer
, and
M.
Fujii
,
Chem. Eur. J.
20
,
2031
(
2014
).
19.
M. A.
Lee
,
S. H.
Nam
,
H. S.
Park
,
N. R.
Cheong
,
S.
Ryu
,
J. K.
Song
, and
S. M.
Park
,
Bull. Korean Chem. Soc.
29
,
2109
(
2008
).
20.
E.
Alejandro
,
J. A.
Fernandez
, and
F.
Castano
,
Chem. Phys. Lett.
353
,
195
(
2002
).
21.
K.
Sakota
,
N.
Yamamoto
,
K.
Ohashi
,
M.
Saeki
,
S.
Ishiuchi
,
M.
Sakai
,
M.
Fujii
, and
H.
Sekiya
,
Phys. Chem. Chem. Phys.
5
,
1775
(
2003
).
22.
E. M.
Gibson
,
A. C.
Jones
,
A. G.
Taylor
,
W. G.
Bouwman
,
D.
Phillips
, and
J.
Sandell
,
J. Phys. Chem.
92
,
5449
(
1988
).
23.
K.
Sakota
,
N.
Yamamoto
,
K.
Ohashi
,
H.
Sekiya
,
M.
Saeki
,
S.
Ishiuchi
,
M.
Sakai
, and
M.
Fujii
,
Chem. Phys. Lett.
341
,
70
(
2001
).
24.
K.
Sakota
,
N.
Yamamoto
,
K.
Ohashi
,
M.
Saeki
,
S.
Ishiuchi
,
M.
Sakai
,
M.
Fujii
, and
H.
Sekiya
,
Chem. Phys.
283
,
209
(
2002
).
25.
M.
Okumura
,
L. I.
Yeh
,
J. D.
Myers
, and
Y. T.
Lee
,
J. Phys. Chem.
94
,
3416
(
1990
);
E.
Garand
,
M. Z.
Kamrath
,
P. A.
Jordan
,
A. B.
Wolk
,
C. M.
Leavitt
,
A. B.
McCoy
,
S. J.
Miller
, and
M. A.
Johnson
,
Science
335
,
694
(
2012
);
[PubMed]
A. B.
Wolk
,
C. M.
Leavitt
,
E.
Garand
, and
M. A.
Johnson
,
Acc. Chem. Res.
47
,
202
(
2014
);
[PubMed]
M. A.
Duncan
,
J. Phys. Chem. A
116
,
11477
(
2012
);
[PubMed]
N.
Solcà
and
O.
Dopfer
,
Angew. Chem.
42
,
1537
(
2003
);
H. S.
Andrei
,
N.
Solca
, and
O.
Dopfer
,
Angew. Chem.
47
,
395
(
2008
);
A.
Patzer
,
S.
Chakraborty
,
N.
Solca
, and
O.
Dopfer
,
Angew. Chem.
49
,
10145
(
2010
);
M. A. R.
George
,
M.
Savoca
, and
O.
Dopfer
,
Chem. Eur. J.
19
,
15315
(
2013
);
M.
Savoca
,
J.
Langer
, and
O.
Dopfer
,
Angew. Chem. Int. Ed.
52
,
1568
(
2013
).
26.
A.
Patzer
,
M.
Schütz
,
T.
Möller
, and
O.
Dopfer
,
Angew. Chem. Int. Ed.
51
,
4925
(
2012
).
27.
T.
Nakanaga
,
K.
Kawamata
, and
F.
Ito
,
Chem. Phys. Lett.
279
,
309
(
1997
).
28.
O.
Dopfer
,
Int. Rev. Phys. Chem.
22
,
437
(
2003
).
29.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009
.
30.
M.
Schmies
,
A.
Patzer
,
M.
Fujii
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
13
,
13926
(
2011
).
31.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules
(
Krieger Publishing Company
,
Malabar, Florida
,
1991
).
32.
A. B. J.
Parusel
,
G.
Kohler
, and
H.
Nooijen
,
J. Phys. Chem. A
103
,
4056
(
1999
).
33.
T.
Nakamura
,
M.
Miyazaki
,
M.
Weiler
,
M.
Schmies
,
O.
Dopfer
, and
M.
Fujii
,
ChemPhysChem
14
,
741
(
2013
).
34.
A. G.
Csaszar
,
G.
Czako
,
T.
Furtenbacher
,
J.
Tennyson
,
V.
Szalay
,
S. V.
Shirin
,
N. F.
Zobov
, and
O. L.
Polyansky
,
J. Chem. Phys.
122
,
214305
(
2005
).
35.
N.
Solcà
and
O.
Dopfer
,
Chem. Phys. Lett.
347
,
59
(
2001
);
N.
Solcà
and
O.
Dopfer
,
J. Am. Chem. Soc.
125
,
1421
(
2003
).
[PubMed]
36.
O.
Dopfer
,
D.
Roth
, and
J. P.
Maier
,
Int. J. Mass Spectrom.
218
,
281
(
2002
).
O.
Dopfer
,
J. Phys. Chem. A
104
,
11693
(
2000
);
N.
Solcà
and
O.
Dopfer
,
Chem. Phys. Lett.
342
,
191
(
2001
);
N.
Solcà
and
O.
Dopfer
,
J. Chem. Phys.
120
,
10470
(
2004
).
[PubMed]
38.
E. J.
Bieske
and
O.
Dopfer
,
Chem. Rev.
100
,
3963
(
2000
);
[PubMed]
O.
Dopfer
,
D.
Roth
, and
J. P.
Maier
,
J. Am. Chem. Soc.
124
,
494
(
2002
);
[PubMed]
D.
Roth
and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
4
,
4855
(
2002
);
P.
Botschwina
,
R.
Oswald
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
13
,
14163
(
2011
);
[PubMed]
R. V.
Olkhov
,
S. A.
Nizkorodov
, and
O.
Dopfer
,
J. Chem. Phys.
107
,
8229
(
1997
);
N.
Solcà
and
O.
Dopfer
,
J. Am. Chem. Soc.
126
,
1716
(
2004
);
[PubMed]
O.
Dopfer
,
H. S.
Andrei
, and
N.
Solca
,
J. Phys. Chem. A
115
,
11466
(
2011
);
[PubMed]
M.
Schmies
,
A.
Patzer
,
M.
Schütz
,
M.
Miyazaki
,
M.
Fujii
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
16
,
7980
(
2014
);
[PubMed]
J.
Klyne
,
M.
Schmies
, and
O.
Dopfer
,
J. Phys. Chem. B
118
,
3005
(
2014
);
[PubMed]
K.
Sakota
,
M.
Schütz
,
M.
Schmies
,
R.
Moritz
,
A.
Bouchet
,
T.
Ikeda
,
Y.
Kuono
,
H.
Sekiya
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
16
,
3798
(
2014
);
[PubMed]
N.
Solcà
and
O.
Dopfer
,
Eur. Phys. J. D
20
,
469
(
2002
).
39.
R. V.
Olkhov
and
O.
Dopfer
,
Chem. Phys. Lett.
314
,
215
(
1999
).
40.
R. V.
Olkhov
,
S. A.
Nizkorodov
, and
O.
Dopfer
,
Chem. Phys.
239
,
393
(
1998
).
41.
D. J.
Goebbert
and
P. G.
Wenthold
,
Eur. J. Mass Spectrom.
10
,
837
(
2004
).
42.
Y.
Inokuchi
and
N.
Nishi
,
J. Chem. Phys.
114
,
7059
(
2001
).
43.
L. C. L.
Huang
,
J. L.
Lin
, and
W. B.
Tzeng
,
Chem. Phys.
261
,
449
(
2000
).
44.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
111
,
10075
(
2007
);
[PubMed]
S.
Tomoda
and
K.
Kimura
,
Chem. Phys. Lett.
102
,
560
(
1983
).
45.
M.
Fujii
and
O.
Dopfer
,
Int. Rev. Phys. Chem.
31
,
131
(
2012
);
S.
Ishiuchi
,
M.
Sakai
,
Y.
Tsuchida
,
A.
Takeda
,
Y.
Kawashima
,
M.
Fujii
,
O.
Dopfer
, and
K.
Müller-Dethlefs
,
Angew. Chem. Int. Ed.
44
,
6149
(
2005
);
S. I.
Ishiuchi
,
M.
Sakai
,
Y.
Tsuchida
,
A.
Takeda
,
Y.
Kawashima
,
O.
Dopfer
,
K.
Müller-Dethlefs
, and
M.
Fujii
,
J. Chem. Phys.
127
,
114307
(
2007
);
[PubMed]
S.
Ishiuchi
,
M.
Miyazaki
,
M.
Sakai
,
M.
Fujii
,
M.
Schmies
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
13
,
2409
(
2011
);
[PubMed]
K.
Tanabe
,
M.
Miyazaki
,
M.
Schmies
,
A.
Patzer
,
M.
Schütz
,
H.
Sekiya
,
M.
Sakai
,
O.
Dopfer
, and
M.
Fujii
,
Angew. Chem. Int. Ed.
51
,
6604
(
2012
);
M.
Wohlgemuth
,
M.
Miyazaki
,
M.
Weiler
,
M.
Sakai
,
O.
Dopfer
,
M.
Fujii
, and
R.
Mitric
, “
Single water solvation dynamics probed by infrared spectra: Theory meets experiment
,” Angew. Chem. (in press).
46.
K.
Osawa
,
T.
Hamamoto
,
T.
Fujisawa
,
M.
Terazima
,
H.
Sato
, and
Y.
Kimura
,
J. Phys. Chem. A
113
,
3143
(
2009
).
47.
F.
Huisken
,
M.
Kaloudis
, and
A.
Kulcke
,
J. Chem. Phys.
104
,
17
(
1996
);
Z. S.
Huang
and
R. E.
Miller
,
J. Chem. Phys.
91
,
6613
(
1989
);
K.
Kuyanov-Prozument
,
M. Y.
Choi
, and
A. F.
Vilesov
,
J. Chem. Phys.
132
,
014304
(
2010
).
[PubMed]
48.
See supplementary material at http://dx.doi.org/10.1063/1.4901893 for (1) potential of ABN+-H2O, (2) NBO charge distributions of ABN+-(H2O)n, (3) IR spectra of ABN+-(H2O)3 isomers, (4) charge transfer in ABN+-(H2O)n, and (5) comparison between ABN+-(H2O)n and AN+-(H2O)n spectra.

Supplementary Material

You do not currently have access to this content.