Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

1.
I. U. I.
Ravich
,
B. A.
Efimova
, and
I. A.
Smirnov
,
Semiconducting Lead Chalcogenides
(
Plenum Press
,
New York
,
1970
).
2.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
(
5876
),
634
638
(
2008
).
3.
T.
Shiga
,
J.
Shiomi
,
J.
Ma
,
O.
Delaire
,
T.
Radzynski
,
A.
Lusakowski
,
K.
Esfarjani
, and
G.
Chen
,
Phys. Rev. B
85
(
15
),
155203
(
2012
).
4.
Z.
Tian
,
J.
Garg
,
K.
Esfarjani
,
T.
Shiga
,
J.
Shiomi
, and
G.
Chen
,
Phys. Rev. B
85
(
18
),
184303
(
2012
).
5.
K. F.
Hsu
,
S.
Loo
,
F.
Guo
,
W.
Chen
,
J. S.
Dyck
,
C.
Uher
,
T.
Hogan
,
E. K.
Polychroniadis
, and
M. G.
Kanatzidis
,
Science
303
(
5659
),
818
821
(
2004
).
6.
M. G.
Kanatzidis
,
Chem. Mater.
22
(
3
),
648
659
(
2010
).
7.
J. Q.
He
,
S. N.
Girard
,
M. G.
Kanatzidis
, and
V. P.
Dravid
,
Adv. Funct. Mater.
20
(
5
),
764
772
(
2010
).
8.
K.
Biswas
,
J. Q.
He
,
Q. C.
Zhang
,
G. Y.
Wang
,
C.
Uher
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nat. Chem.
3
(
2
),
160
166
(
2011
).
9.
Y. Z.
Pei
,
J.
Lensch-Falk
,
E. S.
Toberer
,
D. L.
Medlin
, and
G. J.
Snyder
,
Adv. Funct. Mater.
21
(
2
),
241
249
(
2011
).
10.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
(
7416
),
414
418
(
2012
).
11.
S.-H.
Lo
,
J.
He
,
K.
Biswas
,
M. G.
Kanatzidis
, and
V. P.
Dravid
,
Adv. Funct. Mater.
22
(
24
),
5175
5184
(
2012
).
12.
K.
Esfarjani
and
H. T.
Stokes
,
Phys. Rev. B
77
(
14
),
144112
(
2008
).
13.
K.
Esfarjani
,
G.
Chen
, and
H. T.
Stokes
,
Phys. Rev. B
84
(
8
),
085204
(
2011
).
14.
J.
Shiomi
,
K.
Esfarjani
, and
G.
Chen
,
Phys. Rev. B
84
(
10
),
104302
(
2011
).
15.
A. J.
Minnich
,
J. A.
Johnson
,
A. J.
Schmidt
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
K. A.
Nelson
, and
G.
Chen
,
Phys. Rev. Lett.
107
(
9
),
095901
(
2011
).
16.
F.
Yang
and
C.
Dames
,
Phys. Rev. B
87
(
3
),
035437
(
2013
).
17.
S.
Mazumder
and
A.
Majumdar
,
J. Heat Transfer
123
(
4
),
749
(
2001
).
18.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
,
Phys. Rev. B
72
(
6
),
064305
(
2005
).
19.
M.-S.
Jeng
,
R.
Yang
,
D.
Song
, and
G.
Chen
,
J. Heat Transfer
130
(
4
),
042410
(
2008
).
20.
Q.
Hao
,
G.
Chen
, and
M.-S.
Jeng
,
J. Appl. Phys.
106
(
11
),
114321
(
2009
).
21.
J. -P. M.
Péraud
and
N. G.
Hadjiconstantinou
,
Phys. Rev. B
84
(
20
),
205331
(
2011
).
22.
A.
Jain
,
Y.-J.
Yu
, and
A. J. H.
McGaughey
,
Phys. Rev. B
87
(
19
),
195301
(
2013
).
23.
N.
Zuckerman
and
J. R.
Lukes
,
Phys. Rev. B
77
(
9
),
094302
(
2008
).
24.
W.
Kim
and
A.
Majumdar
,
J. Appl. Phys.
99
(
8
)
084306
(
2006
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4862323 for details of the validation.
26.
H.
Wang
,
A. D.
LaLonde
,
Y. Z.
Pei
, and
G. J.
Snyder
,
Adv. Funct. Mater.
23
(
12
),
1586
1596
(
2013
).

Supplementary Material

You do not currently have access to this content.