The quartic force field of acetylene was determined using the CCSD(T) method (coupled cluster with all single and double substitutions and quasiperturbative inclusion of connected triple excitations) with a variety of one-particle basis sets of the atomic natural orbital, correlation consistent, and augmented correlation consistent types. The harmonic πg bending frequency ω4 and the corresponding anharmonicity ω4−ν4 are both found to be extremely sensitive to the basis set used, in particular to the presence of a sufficient complement of diffuse functions. (Due to symmetry cancellation, the corresponding effect on the πu mode, i.e., ω5 and ω5−ν5, is much weaker.) Similar phenomena are observed more generally in bending modes for molecules that possess carbon–carbon multiple bonds. Tentative explanations are advanced. Our best computed quartic force field, which combines CCSD(T)/[6s5p4d3f2g/4s3p2d1f] anharmonicities with a geometry and harmonic frequencies that additionally include inner-shell correlation effects, reproduces the observed fundamentals for HCCH, HCCD, DCCD, H13CCH, and H13C13CH with a mean absolute error of 1.3 cm−1, and the equilibrium rotational constant to four decimal places, without any empirical adjustment. Anharmonicity and quartic resonance constants are in excellent agreement with the recent determination of Temsamani and Herman [J. Chem. Phys. 103, 6371 (1995)], except for the vibrational l-doubling constant R45, for which an adjustment to the computed force field is proposed.

1.
M. J.
Bramley
,
S.
Carter
,
N. C.
Handy
, and
I. M.
Mills
,
J. Mol. Spectrosc.
157
,
301
(
1993
).
2.
D. M.
Jonas
,
S. A. B.
Solina
,
B.
Rajaram
,
R. J.
Silbey
,
R. W.
Field
,
K.
Yamanouchi
, and
S.
Tsuchiya
,
J. Chem. Phys.
99
,
7380
(
1993
).
3.
M. A.
Temsamani
and
M.
Herman
,
J. Chem. Phys.
103
,
6371
(
1995
).
4.
M. A.
Temsamani
,
M.
Herman
,
S. A. B.
Solina
,
J. P.
O’Brien
, and
R. W.
Field
,
J. Chem. Phys.
105
,
11
357
(
1996
).
5.
M. A.
Temsamani
and
M.
Herman
,
J. Chem. Phys.
105
,
1355
(
1996
).
6.
A.
Campargue
,
M. A.
Temsamani
, and
M.
Herman
,
Mol. Phys.
90
,
793
(
1997
).
7.
S. F.
Yang
,
L.
Biennier
,
A.
Campargue
,
M. A.
Temsamani
, and
M.
Herman
,
Mol. Phys.
90
,
807
(
1997
).
8.
M. J.
Bramley
and
N. C.
Handy
,
J. Chem. Phys.
98
,
1378
(
1993
).
9.
G.
Strey
and
I. M.
Mills
,
J. Mol. Spectrosc.
59
,
103
(
1976
).
10.
D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1981), and references therein.
11.
I.
Suzuki
and
J.
Overend
,
Spectrochim. Acta A
25
,
977
(
1969
).
12.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Mol. Spectrosc.
160
,
105
(
1993
).
13.
S.
Carter
and
N. C.
Handy
,
J. Mol. Spectrosc.
179
,
65
(
1996
);
see also
S.
Carter
,
N.
Pinnavaia
, and
N. C.
Handy
,
Chem. Phys. Lett.
240
,
400
(
1995
).
14.
S.
Carter
,
N. C.
Handy
, and
J.
Demaison
,
Mol. Phys.
90
,
729
(
1997
).
15.
J. M. L.
Martin
,
Chem. Phys. Lett.
242
,
343
(
1995
).
16.
D. C.
Burleigh
,
A. B.
McCoy
, and
E. L.
Sibert
III
,
J. Chem. Phys.
104
,
480
(
1996
).
17.
A. B.
McCoy
and
E. L.
Sibert
III
,
J. Chem. Phys.
97
,
2938
(
1992
); and references therein.
18.
R. J.
Bouwens
,
J. A.
Hammerschmidt
,
M. M.
Grzeskowiak
,
T. A.
Stegink
,
P. M.
Yorba
, and
W. F.
Polik
,
J. Chem. Phys.
104
,
460
(
1996
).
19.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
Chem. Phys. Lett.
205
,
535
(
1993
).
20.
G. S.
Yan
,
H.
Xian
, and
D. Q.
Xie
,
Chem. Phys. Lett.
271
,
157
(
1997
).
21.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Császár
,
D. A.
Clabo
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
145
,
427
(
1990
).
22.
E. D.
Simandiras
,
J. E.
Rice
,
T. J.
Lee
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
88
,
3187
(
1988
).
23.
W.
Meyer
,
Int. J. Quantum Chem. Quantum Biol. Symp.
5
,
341
(
1971
);
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
);
W.
Meyer
,
J. Chem. Phys.
64
,
2901
(
1976
);
for a review, see
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
24.
P.
Botschwina
,
Chem. Phys.
68
,
41
(
1982
).
25.
R. D. Amos, J. F. Gaw, N. C. Handy, and S. Carter, J. Chem. Soc. Faraday Trans. II 84, 1247 (1988).
26.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
,
J. Chem. Phys.
102
,
254
(
1995
).
27.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
Francois
,
J. Chem. Phys.
103
,
2589
(
1995
).
28.
T. J.
Lee
,
J. M. L.
Martin
,
C. E.
Dateo
, and
P. R.
Taylor
,
J. Phys. Chem.
99
,
15
858
(
1995
).
29.
J. M. L.
Martin
and
T. J.
Lee
,
Chem. Phys. Lett.
258
,
129
(
1996
).
30.
G. D.
Purvis
III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
31.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
32.
T. J.
Lee
and
J. E.
Rice
,
Chem. Phys. Lett.
150
,
406
(
1988
);
A. P.
Rendell
,
T. J.
Lee
, and
A.
Komornicki
,
Chem. Phys. Lett.
178
,
462
(
1991
).
33.
C.
Hampel
,
K. A.
Peterson
, and
H. J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
34.
T. J. Lee and G. E. Scuseria, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S. R. Langhoff (Kluwer Academic, Dordrecht, 1995), pp. 47–108.
35.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
36.
J. M. L.
Martin
and
P. R.
Taylor
,
Chem. Phys. Lett.
248
,
336
(
1996
).
37.
C. E.
Dateo
and
T. J.
Lee
,
Spectrochim. Acta A
53
,
1065
(
1997
).
38.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
Chem. Phys. Lett.
275
,
414
(
1997
).
39.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
40.
J. Almlöf, H. Sellers, A. D. McLean, S. Saebo/, and P. R. Taylor (unpublished results).
41.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
42.
J. E.
Del Bene
,
J. Phys. Chem.
97
,
107
(
1993
).
43.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
1930
(
1993
).
44.
J. M. L.
Martin
and
P. R.
Taylor
,
Chem. Phys. Lett.
225
,
473
(
1994
).
45.
INTDER is a general coordinate transformation program written by Wesley D. Allen.
46.
MOLPRO 96 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schütz, H. Stoll, T. Thorsteinsson, and D. L. Cooper. The scfpr0 patch, which allows further tightening of the SCF convergence criteria, was installed.
47.
SPECTRO, version 3.0 (1996), written by J. F. Gaw, A. Willetts, W. H. Green, and N. C. Handy;
modifications by J. M. L. Martin.
48.
J. F. Gaw, A. Willetts, W. H. Green, and N. C. Handy, in Advances in Molecular Vibrations and Collision Dynamics, edited by J. M. Bowman (JAI, Greenwich, CT, 1990).
49.
J. M. L.
Martin
,
J. Chem. Phys.
100
,
8186
(
1994
).
50.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
51.
K. Kuchitsu, in Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai (Oxford University Press, Oxford, 1992), pp. 14–46.
52.
E. K.
Plyler
,
E. D.
Tidwell
, and
T. A.
Wiggins
,
J. Opt. Soc. Am.
53
,
589
(
1963
).
53.
Y.
Kabbadj
,
M.
Herman
,
G.
Di Lonardo
,
L.
Fusina
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
150
,
535
(
1991
).
54.
J. M. L.
Martin
,
J. P.
François
, and
R.
Gijbels
,
J. Phys. Chem.
98
,
11
394
(
1994
).
55.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
,
2983
(
1993
).
56.
G.
Di Lonardo
,
P.
Ferracuti
,
L.
Fusina
,
E.
Venuti
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
161
,
466
(
1993
).
57.
G.
Di Lonardo
,
P.
Ferracuti
,
L.
Fusina
, and
E.
Venuti
,
J. Mol. Spectrosc.
164
,
219
(
1994
).
58.
F.
Alboni
,
G.
Di Lonardo
,
P.
Ferracuti
,
L.
Fusina
,
E.
Venuti
, and
K. A.
Mohamed
,
J. Mol. Spectrosc.
169
,
148
(
1995
).
59.
J.
Hietanen
,
V. M.
Horneman
, and
J.
Kauppinen
,
Mol. Phys.
59
,
587
(
1986
).
60.
As pointed out in Ref. 21, bending force constants expressed in a=sin θ instead of θ differ for the following quartic force constants: faaaa=fθθθθ+4fθθ and faaaa=fθθθθ+fθθ. Note that, while the force field in a coordinates is spherically symmetric, that in θ coordinates is not: that is, faxaxayay=faxaxaxax/3, but fθxθxθyθy=fθxθxθxθx/3+4fθθ/3. In the symmetry coordinates used in the present paper, the following relations then follow (restricted summation convention): k4x4x4y4y=2k4x4x4x4x+k4x4x/3;k5x5x5y5y=2k5x5x5x5x+k5x5x/3;k4x4y5x5y=2(k4x4x5x5x−k4x4x5y5y)+k4x4x+k5x5x. In the unrestricted summation convention, they are F4x4x4y4y=F4x4x4x4x/3+2F4x4x/3;F5x5x5y5y=F5x5x5x5x/3+2F5x5x/3;F4x4y5x5y=(F4x4x5x5x−F4x4x5y5y)/2+(F4x4x+F5x5x)/2. These are easily derived by considering the Taylor series expansion of sin θ and the form of the relevant symmetry coordinates.
61.
J.
Plı́va
,
J. Mol. Spectrosc.
44
,
165
(
1972
).
62.
J. M. L.
Martin
,
J. Chem. Phys.
97
,
5012
(
1992
).
63.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
64.
A. F.
Borro
,
I. M.
Mills
, and
E.
Venuti
,
J. Chem. Phys.
102
,
3938
(
1995
).
65.
I. M.
Mills
and
A. G.
Robiette
,
Mol. Phys.
56
,
743
(
1985
).
66.
K. K.
Lehmann
,
J. Chem. Phys.
96
,
8117
(
1992
).
67.
B. C.
Smith
and
J. S.
Winn
,
J. Chem. Phys.
89
,
4638
(
1988
).
68.
V. M.
Horneman
,
S.
Alanko
, and
J.
Hietanen
,
J. Mol. Spectrosc.
135
,
191
(
1989
);
J.
Hietanen
and
J.
Kauppinen
,
Mol. Phys.
42
,
411
(
1981
).
69.
J.
Vander Auwera
,
D.
Hurtmans
,
M.
Carleer
, and
M.
Herman
,
J. Mol. Spectrosc.
157
,
337
(
1993
).
70.
M. Herman, M. I. El Idrissi, A. Pisarchik, A. Campargue, A.-C. Gaillot, L. Biennier, G. Di Lonardo, and L. Fusina, J. Chem. Phys. (in press).
71.
J.
Liévin
,
M. A.
Temsamani
,
P.
Gaspard
, and
M.
Herman
,
Chem. Phys.
190
,
419
(
1995
);
see also
M. A.
Temsamani
, and
M.
Herman
,
Chem. Phys. Lett.
260
,
253
(
1996
);
M. A.
Temsamani
, and
M.
Herman
,
Chem. Phys. Lett.
264
,
556
(
1997
).
72.
T. R.
Huet
,
M.
Herman
, and
J. W. C.
Johns
,
J. Chem. Phys.
94
,
3407
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.