The vibrational overtone excitation spectra of both bound and predissociative states of hydrogen peroxide molecules cooled in a supersonic expansion show features that are obscured otherwise. Spectra of predissociative states are measured by detecting the decomposition product following excitation of an overtone vibration. Spectra of bound states are obtained by a two‐photon excitation technique in which a second photon excites the molecule from its bound vibrational overtone state to a dissociative state. The features in the bound state (4νOH) spectrum are 0.08 to 0.13 cm1 wide, reflecting small inhomogeneous broadening, but those to the predissociative state (6νOH) are 1.5±0.3 cm1 wide. This width, which corresponds to a lifetime of about 3.5 ps, reflects coupling into the dissociative continuum.

1.
F. F.
Crim
,
Annu. Rev. Phys. Chem.
35
,
657
(
1984
).
2.
K. F. Freed and A. Nitzan, in Energy Storage and Redistribution in Molecules, edited by J. Hinze (Plenum, New York, 1983) and references cited within.
H.‐R.
Dübal
and
M.
Quack
,
J. Chem. Phys.
81
,
3779
(
1984
) and references cited within.
3.
K. W.
Holtzclaw
and
C. S.
Parmenter
,
J. Chem. Phys.
84
,
1099
(
1986
) and references cited within.
4.
T. E.
Gough
,
R. E.
Miller
, and
G.
Scoles
,
Appl. Phys. Lett.
30
,
338
(
1977
);
T. E.
Gough
,
R. E.
Miller
, and
G.
Scoles
,
J. Mol. Spectrosc.
72
,
124
(
1978
);
R. E.
Smalley
,
L.
Wharton
, and
D. H.
Levy
,
Acc. Chem. Res.
10
,
139
(
1977
).
5.
(a)
D.
Douketis
,
D.
Anex
,
G.
Ewing
, and
J. P.
Reilly
,
J. Phys. Chem.
89
,
4173
(
1985
);
(b) R. H. Page, Y. T. Lee, and Y.‐R. Shen, Abstracts, American Chemical Society Meeting, 1986, Anaheim, California;
(c)
G. A.
West
,
R. P.
Mariella
,Jr.
,
J. A.
Pete
,
W. B.
Hammond
, and
D. F.
Heller
,
J. Chem. Phys.
75
,
2006
(
1981
);
(d) E. S. McGinley and F. F. Crim, ibid. (submitted).
6.
(a)
T. R.
Rizzo
,
C. C.
Hayden
, and
F. F.
Crim
,
Faraday Discuss. Chem. Soc.
75
,
223
(
1983
);
T. R.
Rizzo
,
C. C.
Hayden
, and
F. F.
Crim
,
J. Chem. Phys.
81
,
4501
(
1984
);
(b)
H.‐R.
Dübal
and
F. F.
Crim
,
J. Chem. Phys.
83
,
3863
(
1985
); ,
J. Chem. Phys.
(c)
T. M.
Ticich
,
T. R.
Rizzo
,
H.‐R.
Dubal
, and
F. F.
Crim
,
J. Chem. Phys.
84
,
1508
(
1986
).,
J. Chem. Phys.
7.
T. M. Ticich, H.‐R. Dübal, M. D. Likar, and F. F. Crim (in preparation).
8.
The estimate of the density of vibrational and internal rotational states uses an extended version of the direct count Beyer‐Swinehart algorithm given by
S. E.
Stein
and
B. S.
Rabinovitch
,
J. Chem. Phys.
58
,
2438
(
1973
). We treat all vibrations as harmonic except for the torsions. The observed torsional levels are used in the direct count procedure for torsional energies that are below the cis barrier, and the torsion is approximated as a free rotor above the cis barrier. The resulting density of states is 11 per cm−1 at 18 943 cm−1, roughly the energy of OH, and fluctuates between 1.1−6.1 percm−1 in the region of 13 200−13 500 cm−1, a range that includes the energy of the OH state. The average in this region is about 3.6 percm−1 or about one third the value we calculate for the OH region.
9.
H.‐L.
Dai
,
C. L.
Korpa
,
J. L.
Kinsey
, and
R. W.
Field
,
J. Chem. Phys.
82
,
1688
(
1985
).
10.
T.
Uzer
,
J. T.
Hynes
, and
W. P.
Reinhardt
,
Chem. Phys. Lett.
117
,
600
(
1985
);
J. Chem. Phys. (submitted).
11.
N. F.
Scherer
,
F. E.
Doany
,
A. H.
Zewail
, and
J. W.
Perry
,
J. Chem. Phys.
84
,
1932
(
1986
).
12.
G.
Ondrey
,
N.
van Veen
, and
R.
Bersohn
,
J. Chem. Phys.
78
,
3732
(
1983
);
A.
Jacobs
,
K.
Kleinermanns
,
H.
Kuge
, and
J.
Wolfram
,
J. Chem. Phys.
79
,
3162
(
1983
). ,
J. Chem. Phys.
R.
Bersohn
and
M.
Shapiro
,
J. Chem. Phys.
86
,
1396
(
1986
) study the dynamics of the photodissociat?on following excitation from the vibrationless ground state using classical trajectory calculations.,
J. Chem. Phys.
This content is only available via PDF.
You do not currently have access to this content.