A recent theory of Haymet, Rice, and Madden (HRM) for the pair and triplet correlation functions is tested at liquid state densities against new molecular dynamics results for the Lennard‐Jones (12,6) fluid. The HRM integral equation, based on the Born–Green equation and a topological reduction of the diagrammatic expansion of the triplet correlation function, has been solved for a high temperature state (T*=2.74, ρ*=0.80) and is found to give triplet correlation functions in good agreement with the molecular dynamics results. For a lower‐temperature state (T*=0.73, ρ*=0.85), where numerical difficulties have thus far frustrated attempts to obtain a self‐consistent solution of the HRM integral equation, direct tests of the HRM closure are made using molecular dynamics pair correlation functions to evaluate the diagrams. Although some striking qualitative features of the triplet correlations are correctly described by the HRM closure for this low‐temperature state, the HRM approach is not in quantitative agreement with the molecular dynamics results. Test calculations indicate that the principle source of these errors is the neglect of important higher‐order diagrams for the triplet correlation function. A reorganization of the diagrammatic series is suggested which may identify the most important of these neglected diagrams. Additional computer simulation results are also reported for the purely repulsive Weeks–Chandler–Andersen (WCA) ‘‘reference’’ fluid and for the underlying hard sphere fluid. The similarity of the pair structures of these fluids, noted by WCA, is also found to hold with high accuracy for the triplet structures. It is suggested that these similarities may be exploited in applying the methods of HRM to the hard sphere fluid.

1.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
2.
M.
Born
and
H. S.
Green
,
Proc. R. London Soc. Ser. A
188
,
10
(
1946
).
3.
J. Yvon, Actualities Scientifiques et Industriel (Hermann, Paris, 1935), Vol. 203.
4.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1958
).
5.
J. K.
Percus
,
Phys. Rev. Lett.
8
,
462
(
1962
);
in The Equilibrium Theory of Classical Fluids, edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New York, 1964), pp. 11–33.
6.
B. J.
Alder
,
Phys. Rev. Lett.
12
,
317
(
1964
).
7.
A.
Rahman
,
Phys. Rev. Lett.
12
,
575
(
1964
).
8.
J. A.
Krumhansl
and
S.‐S.
Wang
,
J. Chem. Phys.
56
,
2034
,
2179
(
1972
);
S.‐S.
Wang
and
J. A.
Krumhansl
,
J. Chem. Phys.
56
,
4287
(
1972
).,
J. Chem. Phys.
9.
H. J.
Reveché
,
R. D.
Mountain
, and
W. B.
Street
,
J. Chem. Phys.
57
,
4999
(
1972
);
W. B.
Street
,
H. J.
Raveché
, and
R. D.
Mountain
,
J. Chem. Phys.
61
,
1970
(
1974
);
H. J. Raveché and R. D. Mountain in Progress in Liquids Physics, edited by C. A. Croxton (Wiley, New York, 1978), p. 469.
10.
E. E.
Salpeter
,
Ann. Phys. (N. Y.)
5
,
183
(
1968
).
11.
R.
Abe
,
Prog. Theor. Phys.
21
,
421
(
1959
).
12.
G.
Stell
,
Physica
29
,
517
(
1963
);
in The Equilibrium Theory of Classical Fluids, edited by H. L. Frish and J. L. Lebowitz (Benjamin, New York, 1964), pp. 11–171.
13.
S. A.
Rice
and
J.
Lekner
,
J. Chem. Phys.
42
,
3559
(
1965
);
S. A.
Rice
and
D. A.
Young
,
Discuss. Faraday Soc.
43
,
16
(
1967
);
D. A.
Young
and
S. A.
Rice
,
J. Chem. Phys.
46
,
539
(
1967
);
D. A.
Young
and
S. A.
Rice
,
47
,
4228
,
5061
(
1967
).,
J. Chem. Phys.
14.
A. D. J.
Haymet
,
S. A.
Rice
, and
W. G.
Madden
,
J. Chem. Phys.
74
,
3033
(
1981
).
15.
A. D. J.
Haymet
,
S. A.
Rice
, and
W. G.
Madden
,
J. Chem. Phys.
75
,
4696
(
1981
).
16.
J. A.
Barker
and
J. J.
Monaghan
,
J. Chem. Phys.
36
,
2564
(
1962
);
Barker
and
Henderson
,
Can. J. Phys.
45
,
3959
(
1967
);
D.
Henderson
,
Mol. Phys.
10
,
73
(
1966
);
D.
Henderson
,
J. Chem. Phys.
46
,
4306
(
1967
);
D.
Henderson
and
L.
Oden
,
Mol. Phys.
10
,
405
;
D.
Henderson
,
S.
Kim
, and
L.
Oden
,
Discuss. Faraday Soc.
43
,
26
(
1967
);
D.
Henderson
,
S.
Kim
, and
L.
Oden
,
Trans. Faraday Soc.
65
,
2308
(
1969
).
17.
For recent reviews, see:
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
);
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
Adv. Chem. Phys.
34
,
105
(
1976
);
J. P. Hansenandl, R. McDonald, Theory of Simple Liquids (Academic, London, 1976).
18.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
19.
C. W. Gear, Applications and Algorithms in Computer Science, Module A (Science Research Association, Chicago, 1978).
20.
M.
Tanaka
and
Y.
Fukui
,
Prog. Theor. Phys.
53
,
1547
(
1975
).
21.
See AIP document No. PAPS JCPSA‐78‐388‐39 for 39 pages of tables of triplet correlation function.
Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 East 45th Street, N.Y., N.Y. 10017. The price is $1.50 for each microfiche, or $5 for a photocopy. Airmail additional. Make checks payable to the American Institute of Physics.
22.
L.
Mier y Teran
and
F.
del Rio
,
J. Chem. Phys.
72
,
1044
(
1980
).
23.
L.
Verlet
,
Phys. Rev.
165
,
201
(
1968
).
24.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
25.
D. D.
Fitts
and
W. R.
Smith
,
Mol. Phys.
22
,
625
(
1971
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.