Two new theoretical developments are presented in this article. First an energy corrected sudden (ECS) approximation is derived by explicitly incorporating both the internal energy level spacing and the finite collision duration into the sudden S‐matrix. An application of this ECS approximation to the calculation of rotationally inelastic cross sections is shown to yield accurate results for the H+–CN system. Second, a quantum number and energy scaling relationship for nonreactive S‐matrix elements is derived based on the ECS method. A few detailed illustrations are presented and scaling predictions are compared to exact results for RT, VT, and VR, T processes in various atom–molecule systems. The agreement is uniformly very good — even when the sudden approximation is inaccurate. An important result occurs in the analysis of VT processes: the effects of anharmonic wave functions (coupling) and decreasing vibrational energy gaps (energetics) are separated. Each factor makes significant contributions to the deviation of the anharmonic from the harmonic scaling relationship.

1.
See, for example, Methods of Electronic Structure Theory, edited by Henry F. Schaefer, III (Plenum, New York, 1976), Vol. 3.
2.
See, for example, H. Rabitz, in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1977), Part A, Vol. I.
3.
A. E.
DePristo
and
M. H.
Alexander
,
J. Chem. Phys.
64
,
3009
(
1976
);
A. E.
DePristo
and
M. H.
Alexander
,
66
,
1334
(
1977
).,
J. Chem. Phys.
4.
(a)
S.
Augustin
and
H.
Rabitz
,
J. Chem. Phys.
64
,
1223
(
1976
);
(b)
G. C.
Schatz
,
F. J.
McLafferty
, and
J.
Ross
,
J. Chem. Phys.
66
,
3600
(
1977
);
(c)
B. C.
Eu
,
Chem. Phys.
27
,
301
(
1978
).
5.
See
J.
Schaefer
and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
62
,
1913
(
1975
).
6.
R. B.
Bernstein
and
R. D.
Levine
,
Adv. At. Mol. Phys.
11
,
215
(
1975
);
R. D.
Levine
,
Annu. Rev. Phys. Chem.
29
,
1
(
1978
).
7.
A. E.
DePristo
and
H.
Rabitz
,
J. Chem. Phys.
69
,
902
(
1978
).
8.
R.
Goldflam
and
D. J.
Kouri
,
J. Chem. Phys.
65
,
4218
(
1976
).
9.
(a)
M. H.
Alexander
,
Chem. Phys. Lett.
40
,
267
(
1976
);
(b)
G. D.
Billing
and
L. L.
Poulsen
,
J. Chem. Phys.
68
,
5128
(
1978
);
(c)
D. E.
Pritchard
,
N.
Smith
,
R. D.
Driver
, and
T. A.
Brunner
,
J. Chem. Phys.
70
,
2115
(
1979
).
10.
A. E.
DePristo
and
H.
Rabitz
,
Chem. Phys.
24
,
201
(
1977
);
A. E.
DePristo
and
H.
Rabitz
,
J. Chem. Phys.
68
,
1981
(
1978
).
11.
R.
Goldflam
,
D. J.
Kouri
, and
S.
Green
,
J. Chem. Phys.
67
,
5661
(
1977
);
R.
Goldflam
,
D. J.
Kouri
, and
S.
Green
,
67
,
4149
(
1977
); ,
J. Chem. Phys.
V.
Khare
,
J. Chem. Phys.
68
,
4631
(
1978
).
12.
S.
Green
,
J. Chem. Phys.
69
,
4076
(
1978
);
D. J.
Kouri
,
J. Chem. Phys.
69
,
4999
(
1978
).
13.
The derivation is standard up to this point. See, for example, K. Gottfried, Quantum Mechanics (Benjamin, New York, 1966).
14.
K. H.
Kramers
and
R. B.
Bernstein
[
J. Chem. Phys.
40
,
200
(
1964
)] use this definition in a classical path formalism;
Eq. (2.6) is the obvious quantum mechanical generalization.
15.
The terminology is appropriate since the integrals determine the coupling of m and m′ through L.
16.
Note that Eq. (2.10) is not exact for the true S matrix. For instance, Smm′ is not unitary when generated by SL0. Of course, this breakdown in unitarity is not severe if the sudden approximation is reasonable. We mention this fact solely to point out that Eq. (2.10) is limited by the sudden approximation and thus physically motivated modifications can be extremely useful in extending its range. We mention that other attempts at modifying the sudden approximation have been concerned with calculations but not with scaling properties. See, for example, M. H. Alexander and A. E. DePristo, J. Phys. Chem. (in press);
and
R. J.
Cross
, Jr.
,
J. Chem. Phys.
69
,
4495
(
1978
).
17.
A similar correction has recently been incorporated in electron—molecule scattering theory. See
R. K.
Nesbet
,
Phys. Rev. A
19
,
551
(
1979
).
18.
An integral of the form
−τc/2τc/2(1+iωt−ω2t2/2)Vs(t)dt
is approximated by
1τc−τc/2τc/2(1+iωt−ω2t2/2)dt∫−τc/2τc/2V3(t)dt.
The first integral is 1−ω2c/2)2/6, which is rewritten as the Padé approximant 6[6+(ωτc/2)2]−1. This eliminates the unphysical negative values for (ωtc/2)>6 and also approximately incorporates higher order terms in ωτc. The second integral is identified as the nth term in the expansion of the sudden S matrix.
19.
See
G.
Fisanick‐Englot
and
H.
Rabitz
,
J. Chem. Phys.
62
,
1409
(
1975
), and Refs. 1–6 therein.
20.
R.
Ramaswamy
,
A. E.
DePristo
, and
H.
Rabitz
,
Chem. Phys. Lett.
61
,
495
(
1979
).
21.
A. E.
DePristo
and
M. H.
Alexander
,
J. Phys. B
9
,
2713
(
1976
).
22.
M. J.
Jamieson
,
P. M.
Kalaghan
, and
A.
Dalgarno
,
J. Phys. B
8
,
2140
(
1975
).
23.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
24.
S.
Green
,
J. Chem. Phys.
64
,
3463
(
1976
).
25.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, Princeton, 1974).
26.
For He‐diatomic molecule systems, σhs is usually around 3 Å, as can be seen by using the combining rules in J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).
27.
I. S. Gradshteyn and I. W. Ryzhik, Tables of Integrals Series and Products (Academic, New York, 1965).
28.
For n̄ = 1, Eq. (5.7) reproduces the SSH result [
R. N.
Schwartz
,
Z. I.
Slawsky
, and
K. F.
Herzfeld
,
J. Chem. Phys.
20
,
1591
(
1952
)]. For n̄>1, the SSH result is n̄! larger than Eq. (5.7) and is almost certainly incorrect as shown in Table III and IV.
29.
A. P.
Clark
and
A. S.
Dickinson
,
J. Phys. B
6
,
164
(
1973
).
30.
The separation of Injnjmmj,n′j′m′j into vibration‐rotation and pure rotation factors results from the separability of the internal state wave function.
31.
M. H.
Alexander
,
J. Chem. Phys.
66
,
4608
(
1977
).
32.
M. R.
Verter
and
H.
Rabitz
,
J. Chem. Phys.
64
,
2939
(
1976
).
33.
See, for example,
R. D.
Driver
,
T. A.
Brunner
,
N.
Smith
, and
D. E.
Pritchard
,
J. Chem. Phys.
70
,
4155
(
1979
);
the assumption that the rotational transition rate for j→j′ is a function only of |j′−j| is made. Although this assumption is reasonable for j,j′≫⊻j′−j⊻ as shown by Eq. (4.7) with k = k′ = 0, transition rates for large quanta changes may not be accurately extracted using this assumption.
34.
The maximum turning point occurs when the coupling potential is ≃0.5 times the energy gap for a transition to be probable [
A. E.
DePristo
and
M. H.
Alexander
,
Chem. Phys. Lett.
44
,
214
(
1976
)].
35.
G.
Birnbaum
,
E. R.
Cohen
, and
J. R.
Rusk
,
J. Chem. Phys.
49
,
5150
(
1968
).
36.
(a)
I. C.
Percival
and
M.
Seaton
,
Proc. Cambridge Philos. Soc.
53
,
654
(
1957
);
(b)
W. A.
Lester
, Jr.
,
Methods Comput. Phys.
10
,
211
(
1971
).
37.
This result has also been derived by
S.
Green
,
J. Chem. Phys.
70
,
816
(
1979
) within the IOS formalism.
38.
A. E. DePristo and H. Rabitz, J. Quant. Spectrosc. Radiat. Transfer (in press).
This content is only available via PDF.
You do not currently have access to this content.