The combined effects of size and temperature on the stable structures of water clusters doped with one ammonium molecule have been investigated theoretically using an empirical potential and density-functional theory (DFT) calculations. Global optimization with Monte Carlo methods has been performed using an explicit intermolecular potential based on the Kozack–Jordan polarizable model. Putative lowest-energy structures based on this empirical potential are reported. Our results indicate a high propensity for the NH4+ impurity to be fully solvated by water molecules. Clathratelike patterns are formed for clusters containing more than 11 molecules. Local reoptimizations of candidate structures carried out at the DFT level with the B3LYP hybrid functional and the 6-311++G(d,p) basis set confirm the general trends obtained with the intermolecular potential. However, some reorderings between isomers often due to zero-point energy corrections are found in small clusters, leading to stable geometries in agreement with other first-principles studies. Temperature effects have been assessed using a simple harmonic superposition approximation for selected cluster sizes and using dedicated Monte Carlo simulations for (H2O)20NH4+. The clusters are found to melt near 200 K, and possibly isomerize already below 50 K. The free energy barrier for core/surface isomerization of the impurity in the 21-molecule cluster is estimated to be only a few kcal/mol at 150 K. The vibrational spectroscopic signatures of the clusters obtained from the electronic structure calculations show the usual four O–H stretching bands. As the cluster size increases, the double acceptor-single donor band near 3700cm1 increasingly dominates over the three other bands. While we do not find conclusive evidence for a O–H stretching spectroscopic signature of the ammonium impurity to be in the core or at the surface in the 20-molecule cluster, a possible signature via the N–H stretching bands is suggested near 28002900cm1. In the larger (H2O)49NH4+ cluster, the impurity is slightly more stable at the surface.

1.
R. G.
Keesee
,
J. Geophys. Res.
94
,
14683
(
1989
).
2.
R. P.
Wayne
,
Chemistry of Atmospheres
, 3rd ed. (
Oxford University Press
,
Oxford
,
2000
).
3.
G.
Nidener-Shatteburg
and
V. E.
Bondybey
,
Chem. Rev. (Washington, D.C.)
100
,
4059
(
2000
).
4.
J. J.
Gilligan
,
D. J.
Moody
, and
A. W.
Castleman
, Jr.
,
Z. Phys. Chem.
214
,
1383
(
2000
).
5.
H. G.
Kjaergaard
,
T. W.
Robinson
,
D. L.
Howard
,
J. S.
Daniel
,
J. E.
Headrick
, and
V.
Vaida
,
J. Phys. Chem. A
107
,
10680
(
2003
).
6.
P. G.
Sennikov
,
S. K.
Ignatov
, and
O.
Schrems
,
ChemPhysChem
6
,
392
(
2005
).
7.
W. W.
Duley
,
Astrophys. J.
471
,
L57
(
1996
).
8.
L. A.
Lipscomb
,
M. E.
Peek
,
F. X.
Zhou
,
J. A.
Bertrand
,
D.
VanDerveer
, and
L. D.
Williams
,
Biochemistry
33
,
3649
(
1994
).
9.
S. S.
Lin
,
Rev. Sci. Instrum.
44
,
516
(
1973
).
10.
J. Q.
Searcy
and
J. B.
Fenn
,
J. Chem. Phys.
77
,
2549
(
1974
).
11.
S.
Wei
,
Z.
Shi
, and
A. W.
Castleman
,
J. Chem. Phys.
94
,
3268
(
1991
).
12.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
Science
304
,
1134
(
2004
).
13.
J. -W.
Shin
,
N. I.
Hammer
,
E. G.
Diken
,
M. A.
Jonson
,
R. S.
Walters
,
T. D.
Jaeger
,
M. A.
Duncan
,
R. A.
Christie
, and
K. D.
Jordan
,
Science
304
,
1137
(
2004
).
14.
C. -C.
Wu
,
C. -K.
Lin
,
H. -C.
Chang
,
J. -C.
Jiang
,
J. -L.
Kuo
, and
M. L.
Klein
,
J. Chem. Phys.
122
,
074315
(
2005
).
15.
T.
James
and
D. J.
Wales
,
J. Chem. Phys.
122
,
134306
(
2005
).
16.
S. S.
Iyengar
,
M. K.
Petersen
,
T. J. F.
Day
,
C. J.
Burnham
,
V. E.
Teige
, and
G. A.
Voth
,
J. Chem. Phys.
123
,
084309
(
2005
).
17.
K. I.
Suhara
,
A.
Fujii
,
K.
Mizuse
,
N.
Mikami
, and
J. -L.
Kuo
,
J. Chem. Phys.
126
,
194306
(
2007
).
18.
H.
Yu
and
Q.
Cui
,
J. Chem. Phys.
126
,
213101
(
2007
).
19.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge, England
,
2003
).
20.
K.
Laasonen
and
M. L.
Klein
,
J. Phys. Chem.
98
,
10079
(
1994
).
21.
22.
23.
C. V.
Ciobanu
,
L.
Ojamäe
,
I.
Shavitt
, and
S. J.
Singer
,
J. Chem. Phys.
113
,
5321
(
2000
).
24.
R. A.
Christie
and
K. D.
Jordan
,
J. Phys. Chem. A
105
,
7551
(
2001
).
25.
D. J.
Wales
and
I.
Ohmine
,
J. Chem. Phys.
98
,
7245
(
1993
).
26.
C.
Tsoo
and
C. L.
Brooks
 III
,
J. Chem. Phys.
101
,
6405
(
1994
).
28.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
(
1998
).
29.
M. P.
Hodges
and
D. J.
Wales
,
Chem. Phys. Lett.
324
,
279
(
2000
).
30.
S. J.
Singer
,
S.
McDonald
, and
L.
Ojamäe
,
J. Chem. Phys.
112
,
710
(
2000
).
31.
H.
Kabrede
and
R.
Hentschke
,
J. Phys. Chem. B
107
,
3914
(
2003
).
32.
S.
MacDonald
,
L.
Ojamäe
, and
S. J.
Singer
,
J. Phys. Chem.
102
,
2824
(
1998
);
J. -L.
Kuo
,
J. V.
Coe
, and
S. J.
Singer
,
J. Chem. Phys.
114
,
2527
(
2001
).
33.
G.
Zundel
and
H. Z.
Metzger
,
Z. Phys. Chem. (Munich)
58
,
225
(
1968
).
34.
Y. -S.
Wang
,
J. C.
Jiang
,
C. -L.
Cheng
,
S. H.
Lin
,
Y. T.
Lee
, and
H. -C.
Chang
,
J. Chem. Phys.
107
,
9695
(
1997
).
35.
H. -C.
Chang
,
Y. -S.
Wang
,
Y. T.
Lee
, and
H. -C.
Chang
,
Int. J. Mass Spectrom.
179-180
,
91
(
1998
).
36.
Y. -S.
Wang
,
H. -C.
Chang
,
J. -C.
Jiang
,
S. H.
Lin
,
Y. T.
Lee
, and
H. -C.
Chang
,
J. Am. Chem. Soc.
120
,
8777
(
1998
).
37.
H.
Shinohara
,
U.
Nagashima
, and
N.
Nishi
,
Chem. Phys. Lett.
111
,
511
(
1984
);
H.
Shinohara
,
U.
Nagashima
,
H.
Tanaka
, and
N.
Nishi
,
J. Chem. Phys.
83
,
4183
(
1985
);
U.
Nagashima
,
N.
Nishi
, and
H.
Tanaka
,
J. Chem. Phys.
84
,
209
(
1986
).
38.
E. G.
Diken
,
N. I.
Hammer
,
M. A.
Johnson
,
R. A.
Christie
, and
K. D.
Jordan
,
J. Chem. Phys.
123
,
164309
(
2005
).
39.
M.
Schmidt
,
A.
Masson
,
C.
Bréchignac
, and
H. P.
Cheng
,
J. Chem. Phys.
126
,
154315
(
2007
).
40.
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
,
J. Phys. Chem. Ref. Data
13
,
695
(
1984
).
41.
H. P.
Cheng
,
J. Chem. Phys.
105
,
6844
(
1996
), and references therein.
42.
S.
Galera
,
J.
Luch
, and
J.
Bertran
,
THEOCHEM
163
,
101
(
1988
).
43.
A.
Pullman
and
A. M.
Armbruster
,
Int. J. Quantum Chem., Symp.
8
,
169
(
1974
).
44.
P. J.
Desmeules
and
L. C.
Allen
,
J. Chem. Phys.
72
,
4731
(
1980
).
45.
46.
H. J.
Böhm
and
I. R.
McDonald
,
J. Chem. Soc., Faraday Trans. 2
80
,
887
(
1984
).
47.
A.
Pullman
,
P.
Claverie
, and
M. C.
Cluzan
,
Chem. Phys. Lett.
117
,
419
(
1985
).
48.
M.
Welti
,
T. K.
Ha
, and
E.
Pretsch
,
J. Chem. Phys.
83
,
2959
(
1985
).
49.
C. A.
Deakyne
,
J. Phys. Chem.
90
,
6625
(
1986
).
50.
E.
Kassab
,
E. M.
Evleth
, and
Z. D.
Hamou-Tahra
,
J. Am. Chem. Soc.
112
,
103
(
1990
).
51.
A. T.
Pudzianowski
,
J. Chem. Phys.
102
,
8029
(
1995
).
52.
J. C.
Contador
,
M. A.
Aguilar
, and
F. J.
Olivares del Valle
,
Chem. Phys.
214
,
113
(
1997
).
53.
S.
Karthikeyan
,
J. T.
Singh
,
M.
Park
,
R.
Kumar
, and
K. S.
Kim
,
J. Chem. Phys.
128
,
244304
(
2008
).
54.
J. C.
Jiang
,
H. -C.
Chang
,
Y. T.
Lee
, and
S. H.
Lin
,
J. Phys. Chem. A
103
,
3123
(
1999
).
55.
H. M.
Lee
,
P.
Tarakeshwar
,
J.
Park
,
M. R.
Kolaski
,
Y. J.
Yoon
,
H. -B.
Yi
,
W. Y.
Kim
, and
K. S.
Kim
,
J. Phys. Chem. A
108
,
2949
(
2004
).
56.
F. C.
Pickard
 IV
,
M. E.
Dunn
, and
G. C.
Shields
,
J. Phys. Chem. A
109
,
4905
(
2005
).
57.
58.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
59.
C. L.
Perrin
and
R. K.
Gipe
,
J. Am. Chem. Soc.
90
,
2174
(
1986
).
60.
C. L.
Perrin
and
R. K.
Gipe
,
Science
238
,
1393
(
1987
).
61.
W. L.
Jorgensen
and
J.
Gao
,
J. Phys. Chem.
90
,
2174
(
1986
).
62.
E.
Kassab
,
E. M.
Evleth
, and
Z. D.
Hamous-Tahra
,
J. Am. Chem. Soc.
112
,
103
(
1990
).
63.
O. A.
Karim
and
A. D. J.
Haymet
,
J. Chem. Phys.
93
,
5961
(
1990
).
64.
R.
Noto
,
V.
Martorana
,
M.
Migliore
, and
S. L.
Fornili
,
Z. Naturforsch. Teil A
46
,
107
(
1991
).
65.
L. X.
Dang
,
Chem. Phys. Lett.
213
,
541
(
1993
).
66.
F.
Brugé
,
M.
Bernasconi
, and
M.
Parrinello
,
J. Chem. Phys.
110
,
4734
(
1999
).
67.
J. C.
Jiang
,
H. C.
Chang
,
Y. T.
Lee
, and
S. H.
Lin
,
J. Phys. Chem.
103
,
3123
(
1999
).
68.
F.
Brugé
,
M.
Bernasconi
, and
M.
Parrinello
,
J. Am. Chem. Soc.
121
,
10883
(
1999
).
69.
T. -M.
Chang
and
L. X.
Dang
,
J. Chem. Phys.
118
,
8813
(
2003
).
70.
R. E.
Kozack
and
P. C.
Jordan
,
J. Chem. Phys.
96
,
3120
(
1992
).
71.
R. E.
Kozack
and
P. C.
Jordan
,
J. Chem. Phys.
96
,
3131
(
1992
).
72.
J. M.
Lisy
,
Int. Rev. Phys. Chem.
16
,
267
(
1997
).
73.
C. J.
Burnham
,
S. S.
Xantheas
,
M. A.
Miller
,
B. E.
Appligate
, and
R. E.
Miller
,
J. Chem. Phys.
117
,
1109
(
2002
).
74.
C. J.
Tsai
and
K. D.
Jordan
,
J. Chem. Phys.
95
,
3850
(
1991
).
75.
C. J.
Tsai
and
K. D.
Jordan
,
J. Chem. Phys.
99
,
6957
(
1993
).
76.
A. N.
Tharrington
and
K. D.
Jordan
,
J. Phys. Chem. A
107
,
7380
(
2003
).
77.
C.
Caleman
and
D.
van der Spoel
,
J. Chem. Phys.
125
,
154508
(
2006
).
78.
M. J.
McGrath
,
J. I.
Siepmann
,
I. F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
J. Phys. Chem. A
110
,
640
(
2006
).
79.
Y. A.
Mantz
,
B.
Chen
, and
G. J.
Martyna
,
J. Phys. Chem. B
110
,
3540
(
2006
).
80.
S.
Shin
,
W. S.
Son
, and
S.
Jang
,
J. Mol. Struct.: THEOCHEM
673
,
109
(
2004
).
81.
S. F.
Langley
,
E.
Curotto
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
126
,
084506
(
2007
).
82.
P. A.
Frantsuzov
and
V. A.
Mandelshtam
,
J. Chem. Phys.
128
,
094304
(
2008
).
83.
U.
Buck
,
I.
Ettischer
,
M.
Melzer
,
V.
Buch
, and
J.
Sadlej
,
Phys. Rev. Lett.
80
,
2578
(
1998
).
84.
85.
J. K.
Kazimirski
and
V.
Buch
,
J. Phys. Chem. A
107
,
9762
(
2003
).
86.
B.
Hartke
,
Phys. Chem. Chem. Phys.
5
,
275
(
2003
).
87.
T.
James
,
D. J.
Wales
, and
J.
Hernández-Rojas
,
Chem. Phys. Lett.
415
,
302
(
2005
).
88.
B.
Bandow
and
B.
Hartke
,
J. Phys. Chem. A
110
,
5809
(
2006
).
89.
G.
Geyer
, in
Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface
, edited by
E. K.
Keramidas
(
Interface Foundation
,
Fairfax Station
,
1991
), p.
156
.
90.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
91.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
92.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
93.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
94.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
95.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
96.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
97.
B.
Chourabi
and
J. J.
Fripiat
,
Clays Clay Miner.
29
,
260
(
1981
).
98.
E.
Srasra
,
F.
Bergaya
, and
J. J.
Fripiat
,
Clays Clay Miner.
42
,
237
(
1994
).
99.
J.
Pironon
,
M.
Pelletier
,
P.
De Donato
, and
R.
Mosser-Ruck
,
Clays Clay Miner.
38
,
201
(
2003
).
100.
J.
Kim
,
S.
Lee
,
S. J.
Cho
,
B. J.
Mhin
, and
K. S.
Kim
,
J. Chem. Phys.
102
,
839
(
1995
).
101.
K. S.
Kim
,
P.
Tarakeshwar
, and
J. Y.
Lee
,
Chem. Rev. (Washington, D.C.)
100
,
4145
(
2000
).
102.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
103.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford CT,
2004
.
104.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
J. Chem. Phys.
114
,
7312
(
2001
).
105.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
Chem. Phys. Lett.
366
,
176
(
2002
).
106.
S. F.
Chekmarev
and
S. V.
Krivov
,
Phys. Rev. E
57
,
2445
(
1998
).
107.
T. V.
Bogdan
,
D. J.
Wales
, and
F.
Calvo
,
J. Chem. Phys.
124
,
044102
(
2006
).
108.
F.
Calvo
,
J. P. K.
Doye
, and
D. J.
Wales
,
J. Chem. Phys.
115
,
9627
(
2001
).
109.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
110.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
111.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
112.
M. P.
Andersson
and
P.
Uvdal
,
J. Phys. Chem. A
109
,
2937
(
2005
).
113.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
114.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
115.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
116.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
117.
K. D.
Jordan
, private communication (June
2008
).
118.
G. K.
Schenter
,
S. M.
Kathmann
, and
B. C.
Garrett
,
Phys. Rev. Lett.
82
,
3484
(
1999
);
G. K.
Schenter
,
S. M.
Kathmann
, and
B. C.
Garrett
,
J. Chem. Phys.
110
,
7951
(
1999
);
S. M.
Kathmann
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
111
,
4688
(
1999
);
S. M.
Kathmann
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
116
,
5046
(
2002
);
S. M.
Kathmann
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
120
,
9133
(
2004
);
[PubMed]
S. M.
Kathmann
,
B. J.
Palmer
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
128
,
064306
(
2008
).
[PubMed]
119.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
42
,
3281
(
1965
);
J.
Lin
and
J. C.
Light
,
J. Chem. Phys.
43
,
3209
(
1965
);
E.
Nikitin
,
Theor. Exp. Chem.
1
,
83
(
1965
);
E.
Nikitin
,
Theor. Exp. Chem.
1
,
90
(
1965
);
E.
Nikitin
,
Theor. Exp. Chem.
1
,
275
(
1965
);
C. E.
Klots
,
J. Phys. Chem.
75
,
1526
(
1971
);
C. E.
Klots
,
Z. Naturforsch. A
27
,
553
(
1971
);
C. E.
Klots
,
Adv. Mass Spectrom.
6
,
9696
(
1973
);
W. J.
Chesnavich
and
M. T.
Bowers
,
J. Am. Chem. Soc.
98
,
8301
(
1976
);
W. J.
Chesnavich
and
M. T.
Bowers
,
J. Chem. Phys.
66
,
2306
(
1977
);
W. J.
Chesnavich
and
M. T.
Bowers
,
J. Am. Chem. Soc.
99
,
1705
(
1977
);
F.
Calvo
and
P.
Parneix
,
J. Chem. Phys.
119
,
256
(
2003
);
F.
Calvo
and
P.
Parneix
,
J. Chem. Phys.
120
,
2780
(
2004
).
[PubMed]
You do not currently have access to this content.