Physical vapor deposition of indomethacin (IMC) was used to prepare glasses with unusual thermodynamic and kinetic stability. By varying the substrate temperature during the deposition from 190K to the glass transition temperature (Tg=315K), it was determined that depositions near 0.85Tg(265K) resulted in the most stable IMC glasses regardless of substrate. Differential scanning calorimetry of samples deposited at 265K indicated that the enthalpy was 8Jg less than the ordinary glass prepared by cooling the liquid, corresponding to a 20K reduction in the fictive temperature. Deposition at 265K also resulted in the greatest kinetic stability, as indicated by the highest onset temperature. The most stable vapor-deposited IMC glasses had thermodynamic stabilities equivalent to ordinary glasses aged at 295K for 7months. We attribute the creation of stable IMC glasses via vapor deposition to enhanced surface mobility. At substrate temperatures near 0.6Tg, this mobility is diminished or absent, resulting in low stability, vapor-deposited glasses.

1.
D. M.
Mattox
,
Handbook of Physical Vapor Deposition Processing
(
Noyes
,
Park Ridge, NJ
,
1998
).
2.
T.
Fuhrmann
and
J.
Salbeck
,
Functional Molecular Glasses: Building Blocks for Future Optoelectronics
(
Wiley
,
New York
,
2002
).
3.
Y.
Shirota
,
J. Mater. Chem.
10
,
1
(
2000
).
4.
J.
Salbeck
,
N.
Yu
,
J.
Bauer
,
F.
Weissortel
, and
H.
Bestgen
,
Synth. Met.
91
,
209
(
1997
).
5.
S. A.
Van Slyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
69
,
2160
(
1996
).
6.
R. C.
Bell
,
H. F.
Wang
,
M. J.
Iedema
, and
J. P.
Cowin
,
J. Am. Chem. Soc.
125
,
5176
(
2003
).
K. P.
Stevenson
,
G. A.
Kimmel
,
Z.
Dohnalek
,
R. S.
Smith
, and
B. D.
Kay
,
Science
283
,
1505
(
1999
).
[PubMed]
8.
K.
Ishii
,
H.
Nakayama
,
T.
Okamura
,
M.
Yamamoto
, and
T.
Hosokawa
,
J. Phys. Chem. B
107
,
876
(
2003
).
9.
M. K.
Mapes
,
S. F.
Swallen
,
K. L.
Kearns
, and
M. D.
Ediger
,
J. Chem. Phys.
124
,
054710
(
2006
).
10.
D.
Turnbull
,
Metall. Trans. A
12A
,
695
(
1981
).
11.
H.
Hikawa
,
M.
Oguni
, and
H.
Suga
,
J. Non-Cryst. Solids
101
,
90
(
1988
).
12.
M.
Oguni
,
H.
Hikawa
, and
H.
Suga
,
Thermochim. Acta
158
,
143
(
1990
).
13.
K.
Takeda
,
O.
Yamamuro
,
M.
Oguni
, and
H.
Suga
,
Thermochim. Acta
253
,
201
(
1995
).
14.
K.
Takeda
,
O.
Yamamuro
, and
H.
Suga
,
J. Phys. Chem.
99
,
1602
(
1995
).
15.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
,
Science
315
,
353
(
2007
).
16.
K. J.
Crowley
and
G.
Zografi
,
J. Pharm. Sci.
91
,
492
(
2002
).
17.
T.
Wu
and
L.
Yu
,
J. Phys. Chem. B
110
,
15694
(
2006
).
18.
S. L.
Shamblin
,
X. L.
Tang
,
L. Q.
Chang
,
B. C.
Hancock
, and
M. J.
Pikal
,
J. Phys. Chem. B
103
,
4113
(
1999
).
19.

More precisely, Tf indicates the temperature at which the extrapolated enthalpy lines of the liquid and glass intersect, as shown in Fig. 1.

20.
C. T.
Moynihan
,
A. J.
Easteal
,
M. A.
DeBolt
, and
J.
Tucker
,
J. Am. Ceram. Soc.
59
,
12
(
1976
).
21.
22.
C. A.
Angell
,
Y. Z.
Yue
,
L. M.
Wang
,
J. R. D.
Copley
,
S.
Borick
, and
S.
Mossa
,
J. Phys.: Condens. Matter
15
,
S1051
(
2003
).
23.
J. M.
Hutchinson
,
Prog. Polym. Sci.
20
,
703
(
1995
).
24.
A. J.
Kovacs
,
Fortschr. Hochpolym.-Forsch.
3
,
394
(
1963
).
25.
D. J.
Plazek
and
J. H.
Magill
,
J. Chem. Phys.
45
,
3038
(
1966
).
26.
R.
Richert
,
K.
Duvvuri
, and
L.-T.
Duong
,
J. Chem. Phys.
118
,
1828
(
2003
).
27.
C. J.
Ellison
and
J. M.
Torkelson
,
Nat. Mater.
2
,
695
(
2003
).
28.
J. A.
Forrest
,
K.
Dalnoki-Veress
,
J. R.
Stevens
, and
J. R.
Dutcher
,
Phys. Rev. Lett.
77
,
2002
(
1996
).
29.
S.
Kawana
and
R. A. L.
Jones
,
Phys. Rev. E
6302
,
021501
(
2001
).
30.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Faraday Discuss.
98
,
219
(
1994
).
31.
K. L.
Kearns
,
Y.
Sun
,
T.
Wu
,
S. F.
Swallen
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. B
(to be submitted).
32.
C. A.
Angell
and
Q.
Zheng
,
Phys. Rev. B
39
,
8784
(
1989
).
33.
M. T.
Cicerone
and
M. D.
Ediger
,
J. Phys. Chem.
97
,
10489
(
1993
).
34.
P.
Rittigstein
,
R. D.
Priestley
,
L. J.
Broadbelt
, and
J. M.
Torkelson
,
Nat. Mater.
6
,
278
(
2007
).
35.
M.
Alcoutlabi
and
G. B.
McKenna
,
J. Phys.: Condens. Matter
17
,
R461
(
2005
).
36.
C. L.
Jackson
and
G. B.
McKenna
,
J. Non-Cryst. Solids
131
,
221
(
1991
).
37.
J.
Zhao
,
J. J.
Wang
,
C. X.
Li
, and
Q. R.
Fan
,
Macromolecules
35
,
3097
(
2002
).
38.
Y.
Li
,
J. Mater. Sci. Technol.
15
,
97
(
1999
).
39.
A. B.
Djurisic
,
C. Y.
Kwong
,
W. L.
Guo
,
T. W.
Lau
,
E. H.
Li
,
Z. T.
Liu
,
H. S.
Kwok
,
L. S. M.
Lam
, and
W. K.
Chan
,
Thin Solid Films
416
,
233
(
2002
).
40.
K.
Ishii
,
Y.
Kobayashi
,
K.
Sakai
, and
H.
Nakayama
,
J. Phys. Chem. B
110
,
24827
(
2006
).
41.
B. C.
Hancock
and
M.
Parks
,
Pharm. Res.
17
,
397
(
2000
).
42.
P.
Fenter
,
F.
Schreiber
,
V.
Bulovic
, and
S. R.
Forrest
,
Chem. Phys. Lett.
277
,
521
(
1997
).
43.
C. Y.
Kwong
,
A. B.
Djurisic
,
V. L.
Roy
,
P.
Lai
, and
W. K.
Chan
,
Thin Solid Films
458
,
281
(
2004
).
44.
K.
Naito
and
A.
Miura
,
J. Phys. Chem.
97
,
6240
(
1993
).
You do not currently have access to this content.