Experiments explore the influence of different C–H stretching eigenstates of CH3D on the reaction of CH3D with Cl(P322). We prepare the 1100(A1,E), 2000(E), and 1000+ν3+ν5 eigenstates by direct midinfrared absorption near 6000cm1. The vibrationally excited molecules react with photolytic Cl atoms, and we monitor the vibrational states of the CH2D or CH3 radical products by 2+1 resonance enhanced multiphoton ionization. Initial excitation of the 2000(E) state leads to a twofold increase in CH2D products in the vibrational ground state compared to 1000+ν3+ν5 excitation, indicating mode-selective chemistry in which the C–H stretch motion couples more effectively to the H-atom abstraction coordinate than bend motion. For two eigenstates that differ only in the symmetry of the vibrational wave function, 1100(A1) and 1100(E), the ratio of reaction cross sections is 1.00±0.05, showing that there is no difference in enhancement of the H-atom abstraction reaction. Molecules with excited local modes corresponding to one quantum of C–H stretch in each of two distinct oscillators react exclusively to form C–H stretch excited CH2D products. Conversely, eigenstates containing stretch excitation in a single C–H oscillator form predominantly ground vibrational state CH2D products. Analyzing the product state yields for reaction of the 1100(A1) state of CH3D yields an enhancement of 20±4 over the thermal reaction. A local mode description of the vibrational motion along with a spectator model for the reactivity accounts for all of the observed dynamics.

1.
F. F.
Crim
,
Acc. Chem. Res.
32
,
877
(
1999
).
2.
W. T.
Duncan
and
T. N.
Truong
,
J. Chem. Phys.
103
,
9642
(
1995
);
J.
Espinosa-Garcia
and
J. C.
Corchado
,
J. Chem. Phys.
105
,
3517
(
1996
);
H.-G.
Yu
and
G.
Nyman
,
Phys. Chem. Chem. Phys.
1
,
1181
(
1999
);
H.-G.
Yu
and
G.
Nyman
,
J. Chem. Phys.
110
,
7233
(
1999
);
J. C.
Corchado
,
D. G.
Truhlar
, and
J.
Espinosa-Garcia
,
J. Chem. Phys.
112
,
9375
(
2000
).
3.
C.
Murray
and
A. J.
Orr-Ewing
,
Int. Rev. Phys. Chem.
23
,
435
(
2004
);
B.
Zhang
and
K.
Liu
,
J. Chem. Phys.
122
,
101102
(
2005
).
[PubMed]
4.
J.
Zhou
,
J. J.
Lin
,
B.
Zhang
, and
K.
Liu
,
J. Phys. Chem. A
108
,
7832
(
2004
).
5.
H. A.
Bechtel
,
J. P.
Camden
,
D. J. A.
Brown
,
M. R.
Martin
,
R. N.
Zare
, and
K.
Vodopyanov
,
Angew. Chem., Int. Ed.
44
,
2382
(
2005
).
6.
Z. H.
Kim
,
H. A.
Bechtel
,
J. P.
Camden
, and
R. N.
Zare
,
J. Chem. Phys.
122
,
084303
(
2005
).
7.
S.
Yoon
,
R. J.
Holiday
, and
F. F.
Crim
,
J. Phys. Chem. B
109
,
8388
(
2005
).
8.
Z. H.
Kim
,
H. A.
Bechtel
, and
R. N.
Zare
,
J. Chem. Phys.
117
,
3232
(
2002
).
9.
H. A.
Bechtel
,
Z. H.
Kim
,
J. P.
Camden
, and
R. N.
Zare
,
J. Chem. Phys.
120
,
791
(
2004
).
10.
J. P.
Camden
,
H. A.
Bechtel
,
D. J.
Ankeny Brown
, and
R. N.
Zare
,
J. Chem. Phys.
124
,
034311
(
2006
).
11.
H. A.
Bechtel
,
Z. H.
Kim
,
J. P.
Camden
, and
R. N.
Zare
,
Mol. Phys.
103
,
1837
(
2005
).
12.
L.
Halonen
and
M. S.
Child
,
Mol. Phys.
46
,
239
(
1982
).
13.
S.
Yoon
,
R. J.
Holiday
, and
F. F.
Crim
,
J. Chem. Phys.
119
,
4755
(
2003
).
14.
K.
Deng
,
X.
Wang
,
H.
Lin
,
D.
Wang
, and
Q.
Zhu
,
Mol. Phys.
97
,
787
(
1999
).
15.
V. M.
Blunt
,
A.
Brock
, and
C.
Manzanares
 I
,
J. Phys. Chem.
100
,
4413
(
1996
).
16.
X.-G.
Wang
and
E. L.
Sibert
 III
(private communication).
17.
L.
Halonen
and
M. S.
Child
,
J. Chem. Phys.
79
,
4355
(
1983
).
18.
G. D.
Boone
,
F.
Agyin
,
D. J.
Robichaud
,
F.-M.
Tao
, and
S. A.
Hewitt
,
J. Phys. Chem. A
105
,
1456
(
2001
).
19.
W. J.
van der Zande
,
R.
Zhang
,
R. N.
Zare
,
K. G.
McKendrick
, and
J. J.
Valentini
,
J. Phys. Chem.
95
,
8205
(
1991
).
20.
NIST Chemistry WebBook, http://webbook.nist.gov/chemistry
21.
S.
Yoon
,
S.
Henton
,
A. N.
Zivkovic
, and
F. F.
Crim
,
J. Chem. Phys.
116
,
10744
(
2002
).
22.
W. W.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
23.
D. J.
Armstrong
,
W. J.
Alford
,
T. D.
Raymond
,
A. V.
Smith
, and
M. S.
Bowers
,
J. Opt. Soc. Am. B
14
,
460
(
1997
).
24.
Y.
Matsumi
,
K.
Tonokura
, and
M.
Kawasaki
,
J. Chem. Phys.
97
,
1065
(
1992
).
25.
J. L.
Brum
,
R. D.
Johnson
 III
, and
J. W.
Hudgens
,
J. Chem. Phys.
98
,
3732
(
1993
).
26.
J. W.
Hudgens
,
T. G.
DiGiuseppe
, and
M. C.
Lin
,
J. Chem. Phys.
79
,
571
(
1983
).
27.
L. S.
Rothman
,
D.
Jacquemart
,
A.
Barbe
 et al,
J. Quant. Spectrosc. Radiat. Transf.
96
,
139
(
2005
).
28.
S. A.
Kandel
and
R. N.
Zare
,
J. Chem. Phys.
109
,
9719
(
1998
).
29.
W. R.
Simpson
,
T. P.
Rakitizis
,
S. A.
Kandel
,
A. J.
Orr-Ewing
, and
R. N.
Zare
,
J. Chem. Phys.
103
,
7313
(
1995
).
30.
A.
Sinha
,
J. D.
Thoemke
, and
F. F.
Crim
,
J. Chem. Phys.
96
,
372
(
1992
).
31.
G.
Tarrago
,
M.
Delaveau
,
L.
Fusina
, and
G.
Guelachvili
,
J. Mol. Spectrosc.
126
,
149
(
1987
).
32.
R. J.
Holiday
, Ph.D. thesis,
University of Wisconsin-Madison
,
2006
.
33.
S.
Yoon
,
R. J.
Holiday
,
E. L.
Sibert
, and
F. F.
Crim
,
J. Chem. Phys.
119
,
9568
(
2003
).
34.
S.
Yoon
, Ph.D. thesis,
University of Wisconsin-Madison
,
2003
.
You do not currently have access to this content.