In this paper it is shown that, within the framework of the Rice—Allnatt theory of transport phenomena in simple dense fluids, the cross‐correlation functions of the soft and hard forces are exactly zero. A relation is found between the soft doublet and soft singlet friction coefficients, and an approximate theory is developed for the soft components of the shear viscosity and the thermal conductivity. The main assumption in this approximation is that of small step diffusion. The soft doublet friction coefficient which is derived in the first part of the paper is then used to calculate values for the soft force contribution to the viscosity and thermal conductivity. It is shown that the equilibrium properties of simple liquids are not known with sufficient accuracy to allow a complete test of the R—A theory, but that the expressions in this theory seem to be moderately insensitive to the equilibrium properties used.

1.
I. Prigogine, Nonequilibrium Statistical Mechanics (Interscience Publishers, Ltd., London, 1962), Vol. 1.
2.
(a)
J. G.
Kirkwood
,
J. Chem. Phys.
14
,
180
(
1946
);
(b)
S. A.
Rice
,
J. G.
Kirkwood
, and
R. A.
Harris
,
Physica
27
,
717
(
1961
).
3.
See, for example,
S. A.
Rice
and
H. L.
Frisch
,
Ann. Rev. Phys. Chem.
11
,
187
(
1960
).
4.
See, also,
J.
Ross
,
J. Chem. Phys.
24
,
375
(
1956
).
5.
E.
Helfand
,
Phys. Fluids
4
,
681
(
1961
).
6.
S. A.
Rice
and
A. R.
Allnatt
,
J. Chem. Phys.
34
,
2144
(
1961
).
7.
A. R.
Allnatt
and
S. A.
Rice
,
J. Chem. Phys.
34
,
2156
(
1961
).
8.
J.
Naghizadeh
and
S. A.
Rice
,
J. Chem. Phys.
36
,
2710
(
1962
).
9.
L.
Ikenberry
and
S. A.
Rice
,
J. Chem. Phys.
39
,
1561
(
1963
).
10.
B. Lowry and S. A. Rice (to be published).
11.
H. T.
Davis
,
S. A.
Rice
, and
L.
Meyer
,
J. Chem. Phys.
37
,
947
(
1962
).
12.
R. Kurth, Axiomalics of Classical Statistical Mechanics (Pergamon Press, Ltd., London, 1960).
13.
See, for example, V. V. Solodovnikov, Introduction to the Statistical Dynamics of Automatic Control Systems (Dover Publications, Inc., New York, 1960).
14.
S. A.
Rice
and
J. G.
Kirkwood
,
J. Chem. Phys.
31
,
901
(
1959
).
15.
This relation is found by inverting the linear phenomenological equation for the flux of matter in isothermal diffusion.
16.
S. A.
Rice
,
Mol. Phys.
4
,
305
(
1961
).
17.
T. L. Hill, Statistical Mechanics (McGraw‐Hill Book Company, Inc., New York, 1956).
18.
(a) M. Klein, Ph.D. thesis, Department of Physics, University of Maryland, 1962;
(b) F. Buff, Ph.D. thesis, Department of Chemistry, California Institute of Technology, 1949.
19.
F. Dinn, Thermodynamic Functions of Gases (Butterworths Scientific Publications, Ltd., London, 1956), Vol. 2.
20.
A.
Suddaby
and
P.
Gray
,
Proc. Phys. Soc. (London)
LXXV
,
109
(
1960
).
21.
P. Gray (private communication).
22.
K. S. Singwi (private communication).
23.
See, for example, R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience Publishers, Inc., New York, 1954), Vol. 1.
24.
The Rice‐Allnatt equation of transport is not a Fredholm integrodifferential equation of either the first or the second kind. The orthogonality conditions as stated above need not hold; however, in the interval (0,0+) or in the limit ζS(1)→0, they must be satisfied. This provides a good consistency check on the Rice‐Allnatt equation.
25.
J. L.
Lebowitz
,
H. L.
Frisch
, and
E.
Helfand
,
Phys. Fluids
3
,
325
(
1960
).
26.
By P. Gray, Department of Chemistry and Institute for the Study of Metals, University of Chicago, Chicago, Illinois.
This content is only available via PDF.