We use molecular dynamics computer simulations to study the equilibrium properties of the surface of amorphous silica. Two types of geometries are investigated: (i) clusters with different diameters (13.5, 19, and 26.5 Å) and (ii) a thin film with thickness 29 Å. We find that the shape of the clusters is independent of temperature and that it becomes more spherical with increasing size. The surface energy is in qualitative agreement with the experimental value for the surface tension. The density distribution function shows a small peak just below the surface, the origin of which is traced back to a local chemical ordering at the surface. Close to the surface the partial radial distribution functions as well as the distributions of the bond–bond angles show features which are not observed in the interior of the systems. By calculating the distribution of the length of the Si–O rings we can show that these additional features are related to the presence of two-membered rings at the surface. The surface density of these structures is around 0.6/nm2, in good agreement with experimental estimates. From the behavior of the mean-squared displacement at low temperatures, we conclude that at the surface the cage of the particles is larger than the one in the bulk. Close to the surface the diffusion constant is somewhat larger than the one in the bulk and with decreasing temperature the relative difference grows. The total vibrational density of states at the surface is similar to the one in the bulk. However, if only the one for the silicon atoms is considered, significant differences are found.

1.
See, e.g., articles in the Proceedings of the Third International Discussion Meeting on Relaxation in Complex Systems [J. Non-Cryst. Solids 235–237 (1998)].
2.
Proceedings of Unifying Concepts in Glass Physics [J. Phys.: Condens. Matter 12, 6295 (2000)].
3.
C. G.
Pantano
,
Rev. Solid State Sci.
3
,
379
(
1989
).
4.
Proceedings of International Workshop on Dynamics in Confinement, J. Phys. IV 10, Proceedings Pr7 (2000).
5.
A. P. Legrand, The Surface Properties of Silica (Wiley, New York, 1998).
6.
R. K. Iler, The Chemistry of Silica (Wiley, New York, 1979).
7.
C. R. Helms and B. D. Deal, The Physics and Chemistry ofSiO2and theSi–SiO2Interface (Plenum, New York, 1993), Vol. 2.
8.
J. F.
Conley
and
P. M.
Lenahan
,
Appl. Phys. Lett.
62
,
40
(
1993
).
9.
E. E.
Stahlbush
,
A. H.
Edwards
,
D. L.
Griscom
, and
B. J.
Mrstik
,
J. Appl. Phys.
73
,
658
(
1993
).
10.
B. A.
Morrow
and
I. A.
Cody
,
J. Phys. Chem.
80
,
1995
(
1976
).
11.
T. A.
Michalske
and
B. C.
Bunker
,
J. Appl. Phys.
56
,
2686
(
1984
).
12.
B. C.
Bunker
,
D. M.
Haaland
,
K. J.
Ward
,
T. A.
Michalske
,
W. L.
Smith
,
J. S.
Binkley
,
C. F.
Melius
, and
C. A.
Balfe
,
Surf. Sci.
210
,
406
(
1989
).
13.
L. H.
Dubois
and
B. R.
Zegarski
,
J. Phys. Chem.
97
,
1665
(
1993
).
14.
L. H.
Dubois
and
B. R.
Zegarski
,
J. Am. Chem. Soc.
115
,
1190
(
1993
).
15.
A.
Grabbe
,
T. A.
Michalske
, and
W. L.
Smith
,
J. Phys. Chem.
99
,
4648
(
1995
).
16.
E.
Rädlein
,
R.
Ambos
, and
G. H.
Frischat
,
Fresenius J. Anal. Chem.
353
,
413
(
1995
).
17.
W.
Raberg
and
K.
Wandelt
,
Appl. Phys. A: Mater. Sci. Process.
66
,
S1143
(
1998
).
18.
P. K.
Gupta
,
D.
Inniss
,
C. R.
Kurkjian
, and
Q.
Zhong
,
J. Non-Cryst. Solids
262
,
200
(
2000
).
19.
C. A.
Murray
and
T. J.
Greytak
,
Phys. Rev. B
20
,
3368
(
1979
);
D. M.
Krol
and
J. G.
van Lierop
,
J. Non-Cryst. Solids
68
,
163
(
1984
);
C. J.
Brinker
,
D. R.
Tallant
,
E. P.
Roth
, and
C. S.
Ashley
,
J. Non-Cryst. Solids
82
,
117
(
1984
);
L. T.
Zhuravlev
,
Langmuir
3
,
316
(
1987
);
B. C.
Bunker
,
D. M.
Haaland
,
T. A.
Michalske
, and
W. L.
Smith
,
Surf. Sci.
222
,
95
(
1989
);
B. A.
Morrow
and
A. J.
McFarlan
,
J. Non-Cryst. Solids
120
,
61
(
1990
);
I.-S.
Chuang
,
D. R.
Kinney
,
C. E.
Bronnimann
,
R. C.
Zeigler
, and
G. F.
Maciel
,
J. Phys. Chem.
96
,
4027
(
1992
);
D. R.
Kinney
,
I.-S.
Chuang
, and
G. F.
Maciel
,
J. Am. Chem. Soc.
115
,
6786
(
1993
);
I.-S.
Chuang
and
G. F.
Maciel
,
J. Am. Chem. Soc.
118
,
401
(
1996
).
20.
F.
Kudo
and
S.
Nagase
,
J. Am. Chem. Soc.
107
,
2589
(
1984
).
21.
M.
O’Keeffe
and
G. V.
Gibbs
,
J. Phys. Chem.
89
,
4574
(
1985
).
22.
D. R.
Hammann
,
Phys. Rev. B
55
,
14784
(
1997
).
23.
D.
Ceresoli
,
M.
Bernasconi
,
S.
Iarlori
,
M.
Parrinello
, and
E.
Tosatti
,
Phys. Rev. Lett.
84
,
3887
(
2000
).
24.
N.
Lopez
,
M.
Vitiello
,
F.
Illas
, and
G.
Pacchioni
,
J. Non-Cryst. Solids
271
,
56
(
2000
).
25.
M.
Vitiello
,
N.
Lopez
,
F.
Illas
, and
G.
Pacchioni
,
J. Phys. Chem. A
104
,
4674
(
2000
);
T.
Uchino
and
T.
Yoko
,
Phys. Rev. B
58
,
5322
(
1998
);
T.
Uchino
and
T.
Yoko
,
J. Chem. Phys.
108
,
8130
(
1998
).
26.
S. H.
Garofalini
,
J. Chem. Phys.
78
,
2069
(
1983
).
27.
S. H.
Garofalini
and
S.
Conover
,
J. Non-Cryst. Solids
74
,
171
(
1985
).
28.
S. M.
Levine
and
S. H.
Garofalini
,
J. Chem. Phys.
86
,
2997
(
1987
).
29.
B. P.
Feuston
and
S. H.
Garofalini
,
J. Chem. Phys.
89
,
5818
(
1988
).
30.
B. P.
Feuston
and
S. H.
Garofalini
,
J. Chem. Phys.
91
,
564
(
1989
).
31.
B. P.
Feuston
and
S. H.
Garofalini
,
J. Appl. Phys.
68
,
4830
(
1990
).
32.
D. A.
Litton
and
S. H.
Garofalini
,
J. Non-Cryst. Solids
217
,
250
(
1997
).
33.
V. A.
Bakaev
,
Phys. Rev. B
60
,
10723
(
1999
).
34.
N.
Capron
,
A.
Lagraa
,
S.
Carniato
, and
G.
Boureau
,
J. Non-Cryst. Solids
216
,
10
(
1997
).
35.
V. A.
Bakaev
and
W. A.
Steele
,
J. Chem. Phys.
111
,
9803
(
1999
).
36.
J. V. L.
Beckers
and
S. W.
de Leeuw
,
J. Non-Cryst. Solids
261
,
87
(
2000
).
37.
V. I.
Bogillo
,
L. S.
Pirnach
, and
A.
Dabrowski
,
Langmuir
13
,
928
(
1997
);
V. A.
Bakaev
,
W. A.
Steele
,
T. I.
Bakaeva
, and
C. G.
Pantano
,
J. Chem. Phys.
111
,
9813
(
1999
);
M. M.
Branda
,
R. A.
Montani
, and
N. J.
Castellani
,
Surf. Sci.
446
,
L89
(
2000
);
M. Rarivomanantsoa, P. Jund, and R. Jullien, preprint 2001.
38.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
39.
A. Roder, Ph.D. Thesis (University of Mainz, 2000).
40.
K.
Vollmayr
,
W.
Kob
, and
K.
Binder
,
Phys. Rev. B
54
,
15808
(
1996
).
41.
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
J. Phys. Chem. B
103
,
4104
(
1999
).
42.
J.
Horbach
and
W.
Kob
,
Phys. Rev. B
60
,
3169
(
1999
).
43.
J.
Horbach
,
W.
Kob
, and
K.
Binder
, preprint cond-mat/9910445
[Eur. Phys. J. B, in press].
44.
K.
Vollmayr
and
W.
Kob
,
Ber. Bunsenges. Phys. Chem.
100
,
1399
(
1996
);
T.
Koslowski
,
W.
Kob
, and
K.
Vollmayr
,
Phys. Rev. B
56
,
9469
(
1997
);
S. N.
Taraskin
and
S. R.
Elliott
,
Europhys. Lett.
39
,
37
(
1997
);
S. N.
Taraskin
and
S. R.
Elliott
,
Phys. Rev. B
56
,
8605
(
1997
);
S. N.
Taraskin
and
S. R.
Elliott
,
Phys. Rev. B
61
,
12017
(
2000
);
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
J. Non-Cryst. Solids
235–237
,
320
(
1998
);
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
Philos. Mag. B
77
,
297
(
1998
);
P.
Jund
and
R.
Jullien
,
Phys. Rev. B
59
,
13707
(
1999
);
M.
Benoit
,
S.
Ispas
,
P.
Jund
, and
R.
Jullien
,
Eur. Phys. J. B
13
,
631
(
2000
);
J. S.
Tse
and
D. D.
Klug
,
Phys. Rev. Lett.
67
,
3559
(
1991
);
J. S.
Tse
and
D. D.
Klug
,
J. Chem. Phys.
95
,
9176
(
1991
);
J. S.
Tse
,
D. D.
Klug
, and
Y. Le
Page
,
Phys. Rev. B
46
,
5933
(
1992
);
J. S.
Tse
,
D. D.
Klug
, and
Y. Le
Page
,
Phys. Rev. Lett.
69
,
3647
(
1992
);
J. S.
Tse
,
D. D.
Klug
, and
D. C.
Allan
,
Phys. Rev. B
51
,
16392
(
1995
).
45.
P.
Vashishta
,
R. K.
Kalia
, and
I.
Ebbsjö
,
Phys. Rev. B
41
,
12197
(
1990
).
46.
For another simulation of SiO2 clusters see
C.
Brangian
,
O.
Pilla
, and
G.
Viliani
,
Philos. Mag. B
79
,
1971
(
1999
).
47.
O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A: Silica Glass and Binary Silicate Glasses (Elsevier, Amsterdam, 1983).
48.
D. E.
Parry
,
Surf. Sci.
49
,
433
(
1975
);
D. E.
Parry
,
Surf. Sci.
54
,
195
(
1976
).
49.
D. M.
Heyes
,
Phys. Rev. B
30
,
2182
(
1984
);
D. M.
Heyes
,
Phys. Rev. B
49
,
755
(
1994
).
50.
In principle, single silicon or oxygen atoms could also evaporate. However, in this case the escape velocity is significantly higher, since the Coulomb attraction has to be overcome. Hence, this type of escape is less frequent than that of small neutral fragments.
51.
J.
Jäckle
and
K.
Kawasaki
,
J. Phys.: Condens. Matter
7
,
4351
(
1995
).
52.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
53.
J. P.
Rino
,
I.
Ebbsjö
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
47
,
3053
(
1993
).
54.
See, e.g.,
J. F.
Stebbins
,
Rev. Mineral.
32
,
191
(
1995
).
55.
D.
Stöffler
and
J.
Arndt
,
Naturwissenschaften
56
,
100
(
1969
).
56.
A.
Weiss
and
A.
Weiss
,
Z. Anorg. Allg. Chem.
276
,
95
(
1954
).
57.
W.
Kob
,
J. Phys.: Condens. Matter
11
,
R85
(
1999
).
58.
C. A. Angell, in Relaxation in Complex Systems, edited by K. L. Ngai and G. B. Wright (U.S. Dept. Commerce, Springfield, 1985).
59.
W. Götze, in Liquids, Freezing and the Glass Transition, edited by J.-P. Hansen, D. Levesque, and J. Zinn-Justin, Les Houches. Session LI, 1989, p. 287 (North-Holland, Amsterdam, 1991);
W.
Götze
,
J. Phys.: Condens. Matter
10A
,
1
(
1999
).
60.
M. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).
61.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).
62.
F. L.
Galeener
,
Phys. Rev. B
19
,
4292
(
1979
).
63.
A.
Pasquarello
,
J.
Sarnthein
, and
R.
Car
,
Phys. Rev. B
57
,
14133
(
1998
), and references therein.
64.
D.
Marx
and
J.
Hutter
,
Mod. Meth. Alg. Quant. Chem.
1
,
301
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.