We study the properties of an isolated, self-interacting wormlike polymer chain on the basis of a nonperturbative 1/d-expansion, where d denotes the dimension of embedding space. In the absence of an external force, we characterize the dimension R of the chain in embedding space via R∼Lν, where L is the internal size. (A) Long-range, repulsive segmental interactions decaying as 1/rα may control chain conformations that are either rodlike, ν=1(1<α<2), “wrinkled,” 1/2<ν<1(2<α<4), or random-walk-like, ν=1/2(α>4). (B) For short-range, screened, repulsive interactions, the crossover between rodlike and random-walk-like behavior is controlled by the persistence length whose interaction part we compute focusing on a Debye–Hückel interaction of strength V0, with inverse screening length κ0. The induced persistence length varies as V0βκ0−γ, with, as expected, (β,γ)=(1,2) when the chain is intrinsically stiff, and, surprisingly, with either (β,γ)=(1/6,7/6) or (β,γ)=(1,7) when the chain is intrinsically very flexible. The chances of experimentally observing the novel regimes may be limited. For a chain subject to an external stretching force f, we determine the force-extension relation ζ=ζ(f )=ζ0+δζ(f ), where ζ denotes the chain extension, ζ0 is the spontaneous extension. (A) If the interaction potential is either screened, or if the decay of a long-range interaction potential is fast, i.e., if α>4, the chain spontaneously generates an “effective tension” and responds linearly to weak forces with elastic constants “renormalized” by interactions. By contrast, “tension-free” chains, with either ν=1, where δζ∼f1/2, or with ν=2/α, where δζ∼f1/3, respond to the weakest force nonlinearly. (B) Near full extension the chain always responds nonlinearly. When the potential is screened, or if α>4, we find the 1/f corrections typical of wormlike chains.

1.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S. B.
Smith
,
Science
265
,
1599
(
1994
).
2.
J. F.
Marko
and
E. D.
Siggia
,
Macromolecules
28
,
8759
(
1995
).
3.
C.
Baumann
,
S. B.
Smith
,
V. A.
Bloomfield
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
6185
(
1997
).
4.
C.
Bustamante
,
S. B.
Smith
,
J.
Liphard
, and
S. B.
Smith
,
Curr. Opin. Struct. Biol.
265
,
1599
(
1994
).
5.
J.-L.
Barrat
and
J. F.
Joanny
,
Adv. Chem. Phys.
94
,
1
(
1996
).
6.
W.
Kuhn
,
O.
Künze
, and
A.
Katachalsky
,
Helv. Chim. Acta
31
,
1994
(
1948
).
7.
P. G
de Gennes
,
P.
Pincus
, and
R. M.
Valesco
,
J. Phys. (Paris)
37
,
1461
(
1976
).
8.
T.
Odijk
,
J. Polym. Sci.
15
,
477
(
1977
).
9.
J.
Skolnick
and
M.
Fixman
,
Macromolecules
10
,
944
(
1977
).
10.
J.-L.
Barrat
and
J. F.
Joanny
,
Europhys. Lett.
24
,
333
(
1993
).
11.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
12.
R.
Podgornik
and
V. A.
Parsegian
,
Phys. Rev. Lett.
80
,
1560
(
1998
).
13.
S.
Leikin
and
A.
Kornyshev
,
Phys. Rev. Lett.
82
,
4138
(
1999
).
14.
V. A.
Bloomfield
,
Curr. Opin. Struct. Biol.
8
,
334
(
1996
).
15.
P. L.
Hansen
,
R.
Podgornik
,
S.
Svensek
, and
V. A.
Parsegian
,
Phys. Rev. E
60
,
1956
(
1999
);
R.
Golestanian
,
M.
Kardar
, and
T. M.
Liverpool
,
Phys. Rev. Lett.
82
,
4456
(
1999
).
16.
The 1/d-expansion is similar to the 1/N-expansion for spin systems. The 1/N-expansion is discussed by
S. K.
Ma
,
Rev. Mod. Phys.
45
,
589
(
1973
);
S. K. Ma, Modern Theory of Critical Phenomena (Addison–Wesley, New York, 1976);
A. M. Polyakov, Gauge Fields and Strings (Harwood Academic, Churs, 1987). The 1/d is discussed by F. David, in Statistical Mechanics of Membranes and Interfaces, edited by D. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 1989).
17.
F.
David
and
E.
Guitter
,
Europhys. Lett.
3
,
1169
(
1987
);
F.
David
and
E.
Guitter
,
Nucl. Phys. B
295
,
332
(
1988
).
18.
P.
Le Doussal
,
J. Phys. A
25
,
L469
(
1992
).
19.
E.
Guitter
and
J.
Palmeri
,
Phys. Rev. A
45
,
734
(
1992
).
20.
F.
David
and
E.
Guitter
,
Europhys. Lett.
5
,
709
(
1988
);
M.
Paczuski
and
M.
Kardar
,
Phys. Rev. A
39
,
6086
(
1989
).
21.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
103
,
9408
(
1995
).
22.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
106
,
4243
(
1997
).
23.
D. Thirumalai and B.-Y. Ha, in Theoretical and Mathematical Models in Polymer Research, edited by A. Grosberg (Academic, Boston, 1998).
24.
T.
Odijk
,
Macromolecules
28
,
7016
(
1995
).
25.
R.
Podgornik
,
P. L.
Hansen
, and
V. A.
Parsegian
,
J. Chem. Phys.
113
,
9343
(
2000
).
26.
P. G. de Gennes, Scaling Concepts in Polymer Physics, 2nd ed. (Cornell University Press, Ithaca, 1984).
27.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, Oxford, 1986).
28.
E.
Guitter
,
F.
David
,
S.
Leibler
, and
L.
Peliti
,
Phys. Rev. Lett.
61
,
2949
(
1988
);
E.
Guitter
,
F.
David
,
S.
Leibler
, and
L.
Peliti
,
J. Phys. (Paris)
50
,
1787
(
1989
).
29.
It is interesting to note that a “phase” characterized by ν=2/α was also predicted via a des Cloizeausx-type (Ref. 30) variational analysis carried out by Bauchaud et al. (Ref. 31). In fact, the equations involved in the analysis are quite similar.
30.
J.
des Cloizeaux
,
J. Phys. (Paris)
31
,
715
(
1970
).
31.
J-P
Bauchaud
,
M.
Mezard
,
G.
Parisi
, and
J. S.
Yedidia
,
J. Phys. A
24
,
L1025
(
1991
).
32.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
110
,
7533
(
1999
).
33.
P.
Pfeuty
,
J. Phys. (Paris)
39
,
C2
-
149
(
1978
);
G.
Jug
and
G.
Rickayzen
,
J. Phys. A
14
,
1357
(
1981
).
34.
G.
Grinstein
and
R.
Pelcovits
,
Phys. Rev. Lett.
47
,
856
(
1981
).
35.
D.
Bratko
and
K. A.
Dawson
,
J. Chem. Phys.
99
,
5352
(
1999
).
36.
B.-Y.
Ha
and
D.
Thirumalai
,
Macromolecules
28
,
577
(
1995
).
37.
A. R.
Khokhlov
and
K. A.
Khachaturian
,
Polymer
23
,
1742
(
1982
).
38.
H.
Li
and
T.
Witten
,
Macromolecules
28
,
5921
(
1995
).
39.
R. R.
Netz
and
H.
Orland
,
Eur. Phys. J. B
8
,
81
(
1999
).
40.
S. B.
Smith
,
L.
Finzi
, and
C.
Bustamante
,
Science
258
,
1122
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.