Neuropediatrics 2006; 37(2): 72-78
DOI: 10.1055/s-2006-924024
Original Article

Georg Thieme Verlag KG Stuttgart · New York

The First Case of 3-Methylcrotonyl-CoA Carboxylase (MCC) Deficiency Responsive to Biotin

D. Friebel1 , M. von der Hagen1 , E. R. Baumgartner2 , B. Fowler2 , G. Hahn3 , P. Feyh4 , G. Heubner1 , M. R. Baumgartner5 , G. F. Hoffmann4
  • 1Department of Neuropaediatrics, Children's Hospital, Technical University of Dresden, Dresden, Germany
  • 2Metabolic Unit, University Children's Hospital, Basel, Switzerland
  • 3Department of Paediatric Radiology, Technical University of Dresden, Dresden, Germany
  • 4University Children's Hospital, Division of Metabolic Diseases, Heidelberg, Germany
  • 5Division of Metabolism and Molecular Paediatrics, University Children's Hospital, Zürich, Switzerland
Further Information

Publication History

Received: April 22, 2005

Accepted after Revision: February 26, 2006

Publication Date:
14 June 2006 (online)

Abstract

3-Methylcrotonylglycinuria is an inborn error of leucine catabolism with an autosomal recessive pattern of inheritance that results from a deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). We report on a nine-year-old boy with severe psychomotor retardation who developed infantile spasms at the age of three weeks. Urine analysis at the age of two years revealed massive 3-methylcrotonylglycinuria and 3-hydroxyisovaleric aciduria suggesting MCC deficiency. Carnitine serum levels were decreased. Biotin therapy led to a dramatic decrease in the frequency of seizures, disappearance of hypsarrhythmia, and near normalisation of organic aciduria. Four months later a protein-restricted diet was introduced in addition and the boy remained clinically and metabolically stable. However, severe psychomotor delay persisted, and the seizures partially reoccurred. Biochemical findings showed partial MCC deficiency in cultured fibroblasts. Molecular genetic studies revealed a heterozygote missense mutation, MCCA-R385S, converting arginine to serine in a highly conserved region of the MCCA gene. This is the first patient with MCC deficiency caused by a heterozygote mutation and who demonstrated a substantial and sustained clinical and biochemical response to therapeutic doses of biotin. Sadly, this patient again also demonstrates that the main determinant of the outcome of even easily treatable metabolic diseases is timely diagnosis.

References

  • 1 Bannwart C, Wermuth B, Baumgartner R, Suormala T, Wiesmann U N. Isolated biotin-resistant deficiency of 3-methylcrotonyl-CoA carboxylase presenting as a clinically severe form in a newborn with fatal outcome.  J Inherit Metab Dis. 1992;  15 863-868
  • 2 Baumgartner M R, Almashanu S, Suormala T, Obie C, Cole R N, Packman S. et al . The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency.  J Clin Invest. 2001;  107 495-504
  • 3 Baumgartner M R, Dantas M F, Suormala T, Almashanu S, Giunta C, Friebel D. et al . Isolated 3-methylcrotonyl-CoA carboxylase deficiency.  Am J Hum Genet. 2004;  75 790-800
  • 4 Beemer F A, Bartlett K, Duran M, Gheim H K, Wadmann S K, Bruinvis L. et al . Isolated biotin-resistant 3-methylcrotonyl-CoA carboxylase deficiency in two sibs.  Eur J Pediatr. 1982;  138 351-354
  • 5 Dantas M F, Suormala T, Randolph A, Coelho D, Fowler B, Valle D, Baumgartner M R. 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 27 probands, 9 symptomatic and 18 detected by newborn screening.  Hum Mutat. 2005;  26 164
  • 6 Elpeleg O N, Havkin S, Barash V, Jakobs C, Glick B, Shalev R S. Familial hypotonia of childhood caused by isolated 3-methylcrotonyl-coenzyme A carboxylase deficiency.  J Pediatr. 1992;  121 407-410
  • 7 Gallardo M E, Desviat L R, Rodriguez J M, Esparza-Gordillo J, Perez-Cerda C, Perez B. et al . The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism.  Am J Hum Genet. 2001;  68 334-346
  • 8 Gibson K M, Bennett M J, Naylor E W, Morton D H. 3-Methylcrotonyl-coenzyme A carboxylase deficiency in Amish/Mennonite adults identified by detection of increased acylcarnitines in blood spots of their children.  J Pediatr. 1998;  132 519-523
  • 9 Koeberl D D, Millington D S, Smith W E, Weavil S D, Muenzer J, McCandless S E. et al . Evaluation of 3-methylcrotonyl-CoA carboxylase deficiency detected by tandem mass spectrometry newborn screening.  J Inherit Metab Dis. 2003;  26 25-35
  • 10 Lagler F B. 3-Methylcrotonyl-CoA Carboxylasemangel. Molekulare Grundlagen. Dissertationsschrift. Medizinische Fakultät der Universität München 2002: 1-5
  • 11 Pacheco-Alvarez D, Solorzano-Vargas R S, Del Rio A L. Biotin in metabolism and its relationship to human disease.  Arch Medic Research. 2002;  33 439-447
  • 12 Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann G F. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications.  Pediatrics. 2003;  111 1399-1406
  • 13 Sloane V, Waldrop G L. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.  J Biol Chem. 2004;  279 15772-15778
  • 14 Suormala T, Wick T, Bonjour J-P, Baumgartner E R. Rapid differential diagnosis of carboxylase deficiencies and evaluation of biotin responsiveness in a single blood sample.  Clin Chim Acta. 1985;  145 151-162
  • 15 Sweetmann L, Williams J C. Branched chain organic acidurias. Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B The Metabolic and Molecular Basis of Inherited Disease (8th ed). New York; McGraw-Hill 2001: 2125-2163
  • 16 Visser G, Suormala T, Smit G P, Reijngoud D J, Bink-Boelkens M T, Niezen-Koning K E. et al . 3-methylcrotonyl-CoA carboxylase deficiency in an infant with cardiomyopathy, in her brother with developmental delay and in their asymptomatic father.  Eur J Pediatr. 2000;  159 901-904
  • 17 Wiesmann U N, Suormala T, Pfenniger J, Baumgartner E R. Partial 3-methylcrotonyl-CoA carboxylase deficiency in an infant with fatal outcome due to progressive respiratory failure.  Eur J Pediatr. 1998;  157 225-229
  • 18 Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry.  N Engl J Med. 2003;  348 2304-2312

Prof. Dr. Georg F. Hoffmann

Division of Metabolic and Endocrine Diseases
University Children's Hospital

Im Neuenheimer Feld 153

69120 Heidelberg

Germany

Email: Georg_Hoffmann@med.uni-heidelberg.de

    >