Exp Clin Endocrinol Diabetes 2004; 112(8): 451-457
DOI: 10.1055/s-2004-821205
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Ovarian Function and Morphology after Deletion of the DARPP-32 Gene in Mice

A. Mayerhofer1 , S. Fritz1 , S. Mani2 , T. Rajendra Kumar3 , A. Thalhammer1 , P. Ingrassia4 , A. A. Fienberg4 , P. Greengard4
  • 1Anatomisches Institut der Universität München, Munich, Germany
  • 2Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
  • 3Department of Pathology, Baylor College of Medicine, Houston, TX, USA
  • 4Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
Further Information

Publication History

Publication Date:
16 September 2004 (online)

Abstract

A plethora of systemic and local signaling molecules regulate ovarian function, but how different signaling molecules interact within an ovarian target cell is not known. Here we report that endocrine cells of the ovary express a phosphoprotein, DARPP-32 (dopamine and cyclic AMP-regulated phosphoprotein of Mr 32,000), which integrates signaling molecules in neurons. We thus hypothesized that DARPP-32 might act in a similar way in ovarian endocrine cells and therefore studied whether DARPP-32 gene deletion has consequences for ovarian functions in mice. Reproductive performance of adult mutants did not differ from wild-type females, as judged from numbers of litters and pups delivered. Similar steroid levels in mutant and wild-type mice ruled out gross abnormalities in the hypothalamic-pituitary-ovarian axis. However, an analysis of ovarian morphology, using serially sectioned ovaries, revealed several differences. Ovaries of young adult mutant mice at 2 - 3 months contained luteinized follicles, but fewer corpora lutea. At 5 - 6 months, large cysts were found in mutant mice, as well as reduced numbers of preantral follicles and antral follicles. Interstitial cell hypertrophy and degeneration was marked in all mutant ovaries at this age. Thus, while the lack of DARPP-32 does not overtly alter reproductive performance in adult mice, it is associated with progressive alterations and derangements of growth and development of ovarian follicles, suggesting premature ovarian ageing. This implies that ovarian DARPP-32 is involved in follicular development, presumably by integrating effects of signaling molecules, which act together to ensure efficient follicular development.

References

  • 1 Bulling A, Berg F D, Berg U, Duffy D M, Stouffer R L, Ojeda S R, Gratzl M, Mayerhofer A. Identification of an ovarian voltage-activated Na+ channel type: Hints to involvement in luteolysis.  Mol Endo. 2000;  14 1064-1074
  • 2 Cho B N, McMullen M L, Pei L, Yates C J, Mayo K E. Reproductive deficiencies in transgenic mice expressing the rat inhibin alpha-subunit gene.  Endocrinology. 2000;  142 4994-5004
  • 3 Conneely O M, Mulac-Jericevic B, Lydon J P, De Mayo F J. Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice.  Mol Cell Endocrinol. 2001;  179 97-103
  • 4 Dissen G A, Romero C, Hirshfield A N, Ojeda S R. Nerve growth factor is required for early follicular development in the mammalian ovary.  Endocrinology. 2001;  142 2078-2086
  • 5 Dong J, Albertini D F, Nishimori K, Kumar T R, Lu N, Matzuk M M. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383 531-535
  • 6 Duleba A J, Pehlivan T, Carbone R, Spaczynski R Z. Activin stimulates proliferation of rat ovarian thecal-interstitial cells.  Biol Reprod. 2001;  65 704-709
  • 7 El-Hefnawy T, Zeleznik A J. Synergism between FSH and activin in the regulation of proliferating cell nuclear antigen (PCNA) and cyclin D2 expression in rat granulosa cells.  Endocrinology. 2001;  142 4357-4362
  • 8 Eppig J J, Wigglesworth K, Pendola F L. The mammalian oocyte orchestrates the rate of ovarian follicular development.  Proc Natl Acad Sci (USA). 2002;  99 2890-2894
  • 9 Fienberg A A, Hiroi N, Mermelstein P G, Song W, Snyder G L, Nishi A, Cheramy A, O'Callaghan J P, Miller D B, Cole D G, Corbett R, Haile C N, Cooper D C, Onn S P, Grace A A, Ouimet C C, White F J, Hyman S E, Surmeier D J, Girault J, Nestler E J, Greengard P. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission.  Science. 1998;  281 838-842
  • 10 Findlay J K, Drummond A E, Dyson M, Baillie A J, Robertson D M, Ethier J. Production and actions of inhibin and activin during folliculogenesis in the rat.  Mol Cell Endocrinol. 2001;  180 139-144
  • 11 Flores-Hernandez J, Hernandez S, Snyder G L, Yan Z, Fienberg A A, Moss S J, Greengard P, Surmeier D J. D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade.  J Neurophysiol. 2000;  83 2996-3004
  • 12 Fritz S, Kunz L, Grünert R, Heiss C, Dimitrijevic N, Mayerhofer A. Muscarinic receptors in human luteinized granulosa cells: Activation blocks gap junctions and induces the transcription factor egr-1.  J Clin Endocrinol Metab. 2002;  87 1362-1367
  • 13 Greengard P, Allen P B, Nairn A C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade.  Neuron. 1999;  23 435-447
  • 14 Greengard P. The neurobiology of slow synaptic transmission.  Science. 2001;  294 1024-1030
  • 15 Heyser C J, Fienberg A A, Greengard P, Gold L H. DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task.  Brain Res. 2000;  867 122-130
  • 16 Hiroi N, Fienberg A A, Haile C N, Alburges M, Hanson G R, Greengard P, Nestler E J. Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice.  Eur J Neurosci. 1999;  11 1114-1118
  • 17 Kumar T R, Wang Y, Lu N, Matzuk M M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility.  Nat Genet. 1997;  115 201-204
  • 18 Lara H E, Porcile A, Espinoza J, Romero C, Luza S M, Fuhrer J, Miranda C, Roblero L. Release of norepinephrine from human ovary: coupling to steroidogenic response.  Endocrine. 2001;  15 187-192
  • 19 Lydon J P, DeMayo F J, Funk C R, Mani S K, Hughes A R, Montgomery Jr C A, Shyamala G, Conneely O M, O'Malley B W. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities.  Genes Dev. 1995;  9 2266-2278
  • 20 Mani S K, Allen J M, Clark J H, Blaustein J D, O'Malley B W. Convergent pathways for steroid hormone- and neurotransmitter-induced rat sexual behavior.  Science. 1994;  265 1246-1249
  • 21 Mani S K, Fienberg A A, O'Callaghan J P, Snyder G L, Allen P B, Dash P K, Moore A N, Mitchell A J, Bibb J, Greengard P, O'Malley B W. Requirement for DARPP-32 in progesterone-facilitated sexual receptivity in female rats and mice.  Science. 2000;  287 1053-1056
  • 22 Mayerhofer A, Dissen G A, Parrott J A, Hill D F, Mayerhofer D, Garfield R E, Costa M E, Skinner M K, Ojeda S R. Involvement of nerve growth factor in the ovulatory cascade: trkA receptor activation inhibits gap junctional communication between thecal cells.  Endocrinology. 1996;  137 5662-5670
  • 23 Mayerhofer A, Dissen G A, Costa M E, Ojeda S R. A role for neurotransmitters in early follicular development: induction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary.  Endocrinology. 1997;  138 3320-3329
  • 24 Mayerhofer A, Smith G D, Danilchik M, Levine J E, Wolf D P, Dissen G A, Ojeda S R. Oocytes are a source of catecholamines in the primate ovary: Evidence for a novel cell-cell regulatory loop in the ovary.  Proc Natl Acad Sci (USA). 1998;  95 10990-10995
  • 25 Mayerhofer A, Frungieri M B, Bulling A, Fritz S. Sources and function of neuronal signalling molecules in the gonads.  Medicina (B Aires). 1999a;  59 (5 Pt 2) 542-545
  • 26 Mayerhofer A, Hemmings Jr H C, Greengard P, Boddien S, Berg U, Brucker C. Functional dopamine-1 receptor (D1-R) and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro.  J Clin Endo Metab. 1999b;  84 257-264
  • 27 Mayerhofer A, Fritz S, Grünert R, Sanders S L, Duffy D M, Ojeda S R, Stouffer R L. D1-Receptor, DARPP-32, and PP-1 in the primate corpus luteum and luteinized granulosa cells: Evidence for phosphorylation of DARPP-32 by dopamine and human chorionic gonadotropin.  J Clin Endocrinol Metab. 2000;  85 4750-4757
  • 28 Ojeda S R, Mayerhofer A, Dissen G A, Hill D F, Smith G D, Wolf D P, Dees W L, Skinner M K. Ovarian development is influenced by a neuroendocrinotrophic regulatory complex. Filicori M, Flamigni C The Ovary: Regulation, Dysfunction, and Treatment. Amsterdam; Elsevier 1996: 589-608
  • 29 Park J I, Kim W J, Wang L, Park H J, Lee J, Park J H, Kwon H B, Tsafriri A, Chun Y. Involvement of progesterone in gonadotrophin-induced pituitary adenylate cyclase-activating polypeptide gene expression in pre-ovulatory follicles of rat ovary.  Mol Hum Reprod. 2000;  6 238-245
  • 30 Park J-Y, Su Y-Q, Ariga M, Law E, Jin S-L, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle.  Science. 2004;  303 682-684 , Epub 2004 Jan 15
  • 31 Power R F, Mani S K, Codina J, Conneely O M, O'Malley B W. Dopaminergic and ligand-independent activation of steroid hormone receptors.  Science. 1991;  25 1636-1639
  • 32 Richards J S. Hormonal control of gene expression in the ovary.  Endocr Rev. 1994;  15 725-751
  • 33 Richards J S. Perspective: The ovarian follicle - a perspective in 2001.  Endocrinology. 2001a;  142 2184-2193
  • 34 Richards J S. New signaling pathways for hormones and cyclic adenosine 3′, 5′-monophosphate action in endocrine cells.  Mol Endo. 2001b;  15 209-218
  • 35 Risinger F O, Freeman P A, Greengard P, Fienberg A A. Motivational effects of ethanol in DARPP-32 knock-out mice.  J Neurosci. 2001;  21 340-348
  • 36 Robker R L, Russell D L, Espey L L, Lydon J P, O'Malley B W, Richards J S. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases.  Proc Natl Acad Sci (USA). 2000;  97 4689-4694
  • 37 Rose U M, Hanssen R G, Kloosterboer H J. Development and characterization of an in vitro ovulation model using mouse ovarian follicles.  Biol Reprod. 1999;  61 503-511
  • 38 Snyder G L, Fienberg A A, Huganir R L, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor.  J Neurosci. 1998;  18 10297-10303
  • 39 Sommersberg B, Bulling A, Salzer U, Fröhlich U, Garfield R E, Amsterdam A, Mayerhofer A. Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone.  Biol Reprod. 2000;  63 1661-1668
  • 40 Svenningsson P, Fienberg A A, Allen P B, Moine C L, Lindskog M, Fisone G, Greengard P, Fredholm B B. Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32.  J Neurochem. 2000;  75 248-257
  • 41 Ying Y, Liu X-M, Marble A, Lawson K A, Zhao G-Q. Requirement of Bmp8 b for the generation of primordial germ cells in the mouse.  Mol Endo. 2000;  14 1053-1063

Professor of Molecular Anatomy, M. D. Artur Mayerhofer

Anatomisches Institut, Universität München

Biedersteiner Straße 29

80802 München

Germany

Phone: + 498941403150

Fax: + 49 89 39 70 35

Email: Mayerhofer@lrz.uni-muenchen.de

    >