Semin Liver Dis 2017; 37(01): 011-016
DOI: 10.1055/s-0036-1597819
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Akt in Chronic Liver Disease and Liver Regeneration

Manuel Morales-Ruiz
1   Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona, Barcelona, Spain
2   Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
3   Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
4   Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
,
Ansgar Santel
2   Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
,
Jordi Ribera
2   Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
3   Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
,
Wladimiro Jiménez
1   Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona, Barcelona, Spain
2   Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
3   Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
4   Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
15 February 2017 (online)

Abstract

The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease.

 
  • References

  • 1 Easton RM, Cho H, Roovers K , et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 2005; 25 (5) 1869-1878
  • 2 Kada F, Rojkind M. Hepatic stellate cells express AKT1 and AKT3 but not AKT2. Paper presented at: Endocrine Society 92nd Annual Meeting; June 19–22, 2010; San Diego, CA
  • 3 Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 (5712): 1098-1101
  • 4 Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 2000; 275 (20) 15458-15465
  • 5 Papapetropoulos A, Fulton D, Mahboubi K , et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000; 275 (13) 9102-9105
  • 6 Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 2002; 90 (12) 1243-1250
  • 7 García-Cardeña G, Fan R, Shah V , et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998; 392 (6678): 821-824
  • 8 Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15 (1) 7-24
  • 9 Gearhart TL, Bouchard MJ. Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes. Virology 2010; 407 (1) 14-25
  • 10 Lee YI, Kang-Park S, Do SI, Lee YI. The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 2001; 276 (20) 16969-16977
  • 11 Guo H, Zhou T, Jiang D , et al. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. J Virol 2007; 81 (18) 10072-10080
  • 12 Rawat S, Bouchard MJ. The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol 2015; 89 (2) 999-1012
  • 13 Cheng D, Zhang L, Yang G , et al. Hepatitis C virus NS5A drives a PTEN-PI3K/Akt feedback loop to support cell survival. Liver Int 2015; 35 (6) 1682-1691
  • 14 Liu Z, Tian Y, Machida K , et al. Transient activation of the PI3K-AKT pathway by hepatitis C virus to enhance viral entry. J Biol Chem 2012; 287 (50) 41922-41930
  • 15 Clément S, Peyrou M, Sanchez-Pareja A , et al. Down-regulation of phosphatase and tensin homolog by hepatitis C virus core 3a in hepatocytes triggers the formation of large lipid droplets. Hepatology 2011; 54 (1) 38-49
  • 16 Rahman MA, Kyriazanos ID, Ono T , et al. Impact of PTEN expression on the outcome of hepatitis C virus-positive cirrhotic hepatocellular carcinoma patients: possible relationship with COX II and inducible nitric oxide synthase. Int J Cancer 2002; 100 (2) 152-157
  • 17 McPherson S, Jonsson JR, Barrie HD, O'Rourke P, Clouston AD, Powell EE. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis. J Hepatol 2008; 49 (6) 1046-1054
  • 18 Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett 2010; 584 (4) 707-712
  • 19 Shi Q, Hoffman B, Liu Q. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs. Virology 2016; 490: 99-108
  • 20 Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol 2008; 6 (4) 266-275
  • 21 Morales-Ruiz M, Cejudo-Martín P, Fernández-Varo G , et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 2003; 125 (2) 522-531
  • 22 Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 2005; 11 (9) 952-958
  • 23 Fernández-Varo G, Melgar-Lesmes P, Casals G , et al. Inactivation of extrahepatic vascular Akt improves systemic hemodynamics and sodium excretion in cirrhotic rats. J Hepatol 2010; 53 (6) 1041-1048
  • 24 Sopasakis VR, Liu P, Suzuki R , et al. Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 2010; 11 (3) 220-230
  • 25 Taniguchi CM, Kondo T, Sajan M , et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab 2006; 3 (5) 343-353
  • 26 Wang P-X, Zhang X-J, Luo P , et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun 2016; 7: 10592
  • 27 Stiles B, Wang Y, Stahl A , et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 2004; 101 (7) 2082-2087
  • 28 Horie Y, Suzuki A, Kataoka E , et al. Hepatocyte-specific PTEN deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113 (12) 1774-1783
  • 29 Wang B, Majumder S, Nuovo G , et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009; 50 (4) 1152-1161
  • 30 Zheng L, Chen X, Guo J , et al. Differential expression of PTEN in hepatic tissue and hepatic stellate cells during rat liver fibrosis and its reversal. Int J Mol Med 2012; 30 (6) 1424-1430
  • 31 Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 2003; 125 (4) 1246-1257
  • 32 Morales-Ruiz M, Fondevila C, Muñoz-Luque J , et al. Gene transduction of an active mutant of Akt exerts cytoprotection and reduces graft injury after liver transplantation. Am J Transplant 2007; 7 (4) 769-778
  • 33 Pauta M, Rotllan N, Fernández-Hernando A , et al. Akt-mediated FOXO1 inhibition is required for liver regeneration. Hepatology 2015; 20 13: 1-14
  • 34 Lee MY, Luciano AK, Ackah E , et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc Natl Acad Sci U S A 2014; 111 (35) 12865-12870
  • 35 Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for?. J Immunol 2003; 171 (4) 1623-1629
  • 36 Yap TA, Yan L, Patnaik A , et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 2011; 29 (35) 4688-4695
  • 37 Wang Q, Yu WN, Chen X , et al. Spontaneous hepatocellular carcinoma after the combined deletion of Akt isoforms. Cancer Cell 2016; 29 (4) 523-535