Synlett 2016; 27(03): 409-411
DOI: 10.1055/s-0035-1560368
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Disulfanes from Organic Thiocyanates Mediated by Sodium in Silica Gel

Chandra Kant Maurya
Defence Research & Development Establishment (DRDE), Jhansi Road, Gwalior (MP)-474002, India   Email: pkgupta@drde.drdo.in   Email: pr_14@rediffmail.com
,
Avik Mazumder
Defence Research & Development Establishment (DRDE), Jhansi Road, Gwalior (MP)-474002, India   Email: pkgupta@drde.drdo.in   Email: pr_14@rediffmail.com
,
Ajeet Kumar
Defence Research & Development Establishment (DRDE), Jhansi Road, Gwalior (MP)-474002, India   Email: pkgupta@drde.drdo.in   Email: pr_14@rediffmail.com
,
Pradeep Kumar Gupta*
Defence Research & Development Establishment (DRDE), Jhansi Road, Gwalior (MP)-474002, India   Email: pkgupta@drde.drdo.in   Email: pr_14@rediffmail.com
› Author Affiliations
Further Information

Publication History

Received: 12 August 2015

Accepted after revision: 05 October 2015

Publication Date:
09 November 2015 (online)


Abstract

We report an efficient procedure for the synthesis of symmetrical disulfanes from organic thiocyanates in the presence of sodium in silica gel at room temperature. By avoiding the use of foul-smelling thiols, the present protocol provides an attractive alternative to existing methods for the preparation of symmetrical disulfanes.

Supporting Information

 
  • References and Notes

    • 1a Jocelyn PC. Biochemistry of the SH Group: The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulphides. Academic Press; London: 1972
    • 1b Bodzansky M. Principles of Peptide Synthesis. Springer; Berlin: 1984
    • 1c Capozzi G, Madona G In The Chemistry of the Thiol Group. Vol. II. Patai S. Chap. 17 Wiley; Chichester: 1974: 785
    • 2a Ramadas K, Srinivasan N. Synth. Commun. 1995; 25: 227
    • 2b Fisher HL. Ind. Eng. Chem. 1950; 42: 1978
    • 3a Kishi Y, Nakatsuga S, Fukuyama T, Havel M. J. Am. Chem. Soc. 1973; 95: 6493
    • 3b Ito S, Ota A, Suhara H, Tabashi K, Kawashima Y. Chem. Pharm. Bull. 1993; 41: 1066
    • 4a Tazaki M, Tagaki M. Chem. Lett. 1979; 767
    • 4b Caserio MC, Fisher CL, Kim JK. J. Org. Chem. 1985; 50: 4390
    • 4c Koval IV. Russ. Chem. Rev. 1994; 63: 735
    • 4d Billard T, Langlois BR. Tetrahedron Lett. 1996; 37: 6865
    • 5a Nuzzo RG, Allara DL. J. Am. Chem. Soc. 1983; 105: 4481
    • 5b Biebuyck HA, Bain CD, Whitesides GM. Langmuir 1994; 10: 1825
  • 7 Sengupta D, Basu B. Tetrahedron Lett. 2013; 54: 2277
  • 8 Prabhu KR, Ramesha AR, Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
  • 9 Jia X, Zhang Y, Zhou X. Tetrahedron Lett. 1994; 35: 8833
  • 10 Guo H, Zhan Z, Zhang Y. Synth. Commun. 1997; 27: 2721
  • 11 Burns CJ, Field LD, Morgan J, Ridley DD, Vignevich V. Tetrahedron Lett. 1999; 40: 6489
  • 12 Fuska J, Šturdíkova M, Proksa B. Lett. Appl. Microbiol. 1994; 19: 124
  • 13 Dye JL, Cram KD, Urbin SA, Redko MY, Jackson JE, Lefenfeld M. J. Am. Chem. Soc. 2005; 127: 9338
    • 14a Costanzo MJ, Patel MN, Petersen KA, Vogt PF. Tetrahedron Lett. 2009; 50: 5463
    • 14b Nandi P, Redko MY, Petersen K, Dye JL, Lefenfeld M, Vogt PF, Jackson JE. Org. Lett. 2008; 10: 5441
    • 14c Maurya CK, Gupta PK. Tetrahedron Lett. 2015; 56: 2228
  • 15 Kiasat AR, Mehrjardi MF. Bull. Korean Chem. Soc. 2008; 29: 2346
  • 16 Disulfanes (Table 2; Entries 1–14); General Procedure An oven-dried three-neck flask, cooled under a flow of N2, was charged with Na_SG (Stage 1, Sigma–Aldrich, Catalogue No. 660167; 4 mmol, 306 mg), and a solution of the appropriate thiocyanate (1 mmol) in dry THF (5 mL) was added via syringe. The solution was magnetically stirred until the starting material was completely consumed. The reaction was then quenched by careful addition of H2O (10 mL), and the mixture was filtered and extracted with EtOAc (3 × 10 mL). The organic phases were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure to give a crude product that was purified by flash chromatography (silica gel; hexane–EtOAc). (CAUTION! The reaction involves liberation of toxic cyanide ion. The aqueous phase must be carefully treated with NaOCl solution before disposal.).
  • 17 Bis(3-phenoxypropyl) Disulfide (Table 2, Entry 4) Oil; yield: 132 mg (79%). 1H NMR (400 MHz, CDCl3): δ = 2.18 (quin, J = 12 Hz, 4 H), 2.87 (t, J = 12 Hz, 4 H), 4.04 (t, J = 12 Hz, 4 H), 6.87–6.95 (m, 5 H), 7.25–7.29 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 28.76, 35.07, 65.65, 114.45, 120.71, 120.78, 129.40, 158.73. HRMS (ESI): m/z [M + Na]+ calcd for C18H22NaO2S2: 357.1061; found: 357.1063. Bis[2-(phenylsulfanyl)ethyl] Disulfide (Table 2, Entry 5) Oil; yield: 147 mg (87%). 1H NMR (400 MHz, CDCl3): δ = 2.75 (t, J = 12 Hz, 4 H), 3.10 (t, J = 12 Hz, 4 H), 7.15–7.19 (m, 2 H), 7.21–7.23 (m, 4 H), 7.27–7.29 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 33.13, 37.61, 126.54, 129.03, 129.86, 134.75. HRMS (ESI): m/z [M + Na]+ calcd for C16H18NaS4: 361.0291; found: 361.0289. Disulfanediylbis(ethane-2,1-diyl) Dibenzoate (Table 2, Entry 6) Oil; yield: 141 mg (78%). 1H NMR (400 MHz, CDCl3): δ = 3.09 (t, J = 6 Hz, 4 H), 4.60 (t, J = 6 Hz, 4 H), 7.43 (t, J = 6 Hz, 4 H), 7.55–7.56 (d, J = 6 Hz, 2 H), 8.05 (t, J = 6 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 37.42, 62.77, 128.41, 129.69, 129.87, 133.14, 166.35. HRMS (ESI): m/z [M + Na]+ calcd for C18H18NaO4S2: 385.0647; found: 385.0645. Bis(4-methoxybenzyl) Disulfide (Table 2, Entry 10) Oil; yield: 127 mg (83%). 1H NMR (400 MHz, CDCl3): δ = 3.63 (s, 4 H), 3.83 (s, 6 H), 6.89 (d, J = 6 Hz, 4 H), 7.20 (d, J = 6 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 42.75, 55.25, 113.87, 129.38, 130.49, 159.00. HRMS (ESI): m/z [M + Na]+ calcd for C16H18NaO2S2: 329.0748; found: 329.0745. Bis(2-phenylethyl) Disulfide (Table 2, Entry 11) Oil; yield: 112 mg (82%). 1H NMR (400 MHz, CDCl3): δ = 2.88 (dd, J = 6, 12 Hz, 4 H), 2.90 (dd, J = 6, 12 Hz, 4 H), 7.10–7.14 (m, 6 H), 7.20–7.23 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 35.68, 40.16, 126.36, 128.47, 128.57, 139.98. HRMS (ESI): m/z [M + Na]+ calcd for C16H18NaS2: 297.0850; found: 297.0852. Bis(3-fluorobenzyl) Disulfide (Table 2, Entry 12) Oil; yield: 124 mg (88%). 1H NMR (400 MHz, CDCl3): δ = 3.52 (s, 4 H), 6.89 (t, J = 6 Hz, 6 H), 6.94 (d, J = 12 Hz, 1 H), 7.1–7.23 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 42.73, 114.37, 116.29, 125.01, 129.95, 130.00 139.80. HRMS (ESI): m/z [M + Na]+ calcd for C14H12F2NaS2: 305.0348; found: 305.0349. Bis(but-3-yn-1-yl) Disulfide (13) Oil; yield: 66 mg (78%). 1H NMR (400 MHz, CDCl3): δ = 2.04 (s, 2 H), 2.60–2.63 (m, 4 H), 2.85 (t, J = 6 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 18.98, 37.21, 69.87, 82.04. HRMS (ESI): m/z [M + Na]+ calcd for C8H10NaS2: 193.0224; found: 193.0223.
  • 18 Hamed EM, Doai H, McLaughlin CK, Houmam A. J. Am. Chem. Soc. 2006; 128: 6595