Horm Metab Res 2015; 47(10): 753-766
DOI: 10.1055/s-0035-1559646
Review
© Georg Thieme Verlag KG Stuttgart · New York

Genetics of Graves’ Disease: Special Focus on the Role of TSHR Gene

R. Pujol-Borrell
1   Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
2   Immunology Division, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Catalonia, Spain
3   Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
,
M. Giménez-Barcons
1   Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
,
A. Marín-Sánchez
2   Immunology Division, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Catalonia, Spain
,
R. Colobran
1   Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
2   Immunology Division, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Catalonia, Spain
3   Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
› Author Affiliations
Further Information

Publication History

received 17 April 2015

accepted 16 July 2015

Publication Date:
11 September 2015 (online)

Abstract

As most autoimmune diseases, inherited predisposition to Graves’ disease (GD) is polygenic with the main contributory genes being located in the HLA region. Also, as in other autoimmune diseases, family linkage, candidate gene association, and GWAS studies have identified an expanding number of predisposing genes (CTLA4, CD40, PTPN22…) and 2 of them, TG and TSHR, are thyroid specific. In spite of this expanding number of associated genes, it has been estimated that all together they account for only a 20% of the heritability of GD. TSHR is of special interest as it codes for the target of TSHR stimulating antibodies (TSAbs), which are unequivocally pathogenic and an exception in autoimmunity by being stimulating rather than neutral, blocking, or cytotoxic. This is surprising because the generation of stimulating TSHR antibodies by immunisation of laboratory animals has been remarkably difficult, suggesting an underlying mechanism that favours stimulating over neutral or blocking anti-TSHR antibodies must be operating in GD patients. Besides, after HLA, TSHR is the gene most tightly associated to GD. The TSHR polymorphisms conferring susceptibility are located in the unusually large intron 1. Two mechanisms have been already put forward to explain its association with GD. According to one, the risk alleles determine an increase in the expression of TSHR mRNA splice variants that code for a soluble form of the receptor. The wider distribution of soluble TSHR would favour its immunogenicity and the development of an autoimmune response to it. It does not explain why it becomes immunogenic, as immunogenicity and distribution are not necessarily connected, nor why the immune response focus to the production of stimulating antibodies. According to the second mechanism proposed, the risk alleles determine a lower TSHR expression in the thymus and this would favour the escape of more TSHR reactive T cells, that is, central tolerance failure. The unexpected finding that thymocytes express TSHR and that TSAbs stimulate them lead to postulate that this would accelerate their egress from the thymus and a less efficient deletion of the TSHR self-reactive T cells. It can be envisaged that these autoreactive T cells may enhance the production of TSHR-Abs in the germinal centres of the thyroid draining lymph nodes, especially of those capable of further stimulating the egress of autoreactive T cells from the thymus. This mechanism, which does not exclude the former, provides and insight of the way in which TSAbs are favoured over neutral or blocking antibodies. Finally this would explain the frequent finding of thymic hyperplasia in GD patients.

 
  • References

  • 1 Arstila TP, Jarva H. Human APECED; a sick thymus syndrome?. Front Immunol 2013; 4: 313
  • 2 Cheng MH, Anderson MS. Monogenic autoimmunity. Annu Rev Immunol 2012; 30: 393-427
  • 3 Goudy K, Aydin D, Barzaghi F, Gambineri E, Vignoli M, Ciullini Mannurita S, Doglioni C, Ponzoni M, Cicalese MP, Assanelli A, Tommasini A, Brigida I, Dellepiane RM, Martino S, Olek S, Aiuti A, Ciceri F, Roncarolo MG, Bacchetta R. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 2013; 146: 248-261
  • 4 Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, Rider NL, Chikwava KR, Cummings OW, Morton DH, Puffenberger EG. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet 2010; 86: 447-453
  • 5 Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Lango Allen H, De Franco E, McDonald TJ, Rajala H, Ramelius A, Barton J, Heiskanen K, Heiskanen-Kosma T, Kajosaari M, Murphy NP, Milenkovic T, Seppänen M, Lernmark Å, Mustjoki S, Otonkoski T, Kere J, Morgan NG, Ellard S, Hattersley AT. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 2014; 46: 812-814
  • 6 Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: A population based study of young danish twins. BMJ 1995; 311: 913-917
  • 7 Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS, Leslie RD. Heterogeneity of type I diabetes: Analysis of monozygotic twins in great britain and the united states. Diabetologia 2001; 44: 354-362
  • 8 Brix TH, Hegedüs L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin Endocrinol (Oxf) 2012; 76: 457-464
  • 9 Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a major role of heredity in graves’ disease: A population-based study of two danish twin cohorts. J Clin Endocrinol Metab 2001; 86: 930-934
  • 10 Simmonds MJ. GWAS in autoimmune thyroid disease: Redefining our understanding of pathogenesis. Nat Rev Endocrinol 2013; 9: 277-287
  • 11 Oryoji D, Ueda S, Yamamoto K, Yoshimura Noh J, Okamura K, Noda M, Watanabe N, Yoshihara A, Ito K, Sasazuki T. Identification of a hashimoto thyroiditis susceptibility locus via a genome-wide comparison with graves’ disease. J Clin Endocrinol Metab 2015; 100: E319-E324
  • 12 Zhao SX, Xue LQ, Liu W, Gu ZH, Pan CM, Yang SY, Zhan M, Wang HN, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Du WH, Liu BL, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Huang W, Liang L, Qi L, Chen SJ, Chen Z, Chen JL, Song HD. China Consortium for the Genetics of Autoimmune Thyroid Disease. Robust evidence for five new graves’ disease risk loci from a staged genome-wide association analysis. Hum Mol Genet 2013; 22: 3347-3362
  • 13 Cooper JD, Simmonds MJ, Walker NM, Burren O, Brand OJ, Guo H, Wallace C, Stevens H, Coleman G, Franklyn JA, Todd JA, Gough SC. Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet 2012; 21: 5202-5208
  • 14 Liu W, Wang HN, Gu ZH, Yang SY, Ye XP, Pan CM, Zhao SX, Xue LQ, Xie HJ, Yu SS, Guo CC, Du WH, Liang J, Zhang XM, Yuan GY, Li CG, Su Q, Gao GQ, Song HD. China Consortium for the Genetics of Autoimmune Thyroid Disease . Identification of BACH2 as a susceptibility gene for graves’ disease in the chinese han population based on a three-stage genome-wide association study. Hum Genet 2014; 133: 661-671
  • 15 Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Xue LQ, Shen M, Liu W, Xie F, Yang SY, Wang HF, Shi JY, Sun WW, Du WH, Zuo CL, Shi JX, Liu BL, Guo CC, Zhan M, Gu ZH, Zhang XN, Sun F, Wang ZQ, Song ZY, Zou CY, Sun WH, Guo T, Cao HM, Ma JH, Han B, Li P, Jiang H, Huang QH, Liang L, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Chen Z, Chen JL, Chen SJ, Huang W, Song HD. China Consortium for Genetics of Autoimmune Thyroid Disease . A genome-wide association study identifies two new risk loci for graves’ disease. Nat Genet 2011; 43: 897-901
  • 16 Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, Easton D, Evans DM, Leung HT, Marchini JL, Morris AP, Spencer CC, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen St G, Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskivina V, Nikolov I, O’Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop TD, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, Matthew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop MG, Connell J, Dominiczak A, Marcano CA, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hilder SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DP, Thomson W, Worthington J, Dunger DB, Widmer B, Frayling TM, Freathy RM, Lango H, Perry JR, Shields BM, Weedon MN, Hattersley AT, Hitman GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, Rayner NW, Timpson NJ, Zeggini E, Newport M, Sirugo G, Lyons E, Vannberg F, Hill AV, Bradbury LA, Farrar C, Pointon JJ, Wordsworth P, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough SC, Seal S, Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compston A, Conway D, Jallow M, Newport M, Sirugo G, Rockett KA, Bumpstead SJ, Chaney A, Downes K, Ghori MJ, Gwilliam R, Hunt SE, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Cardin NJ, Davison D, Ferreira T, Pereira-Gale J, Hallgrimsdo’ttir IB, Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Brown MA, Compston A, Farrall M, Hall AS, Hattersley AT, Hill AV, Parkes M, Pembrey M, Stratton MR, Mitchell SL, Newby PR, Brand OJ, Carr-Smith J, Pearce SH, McGinnis R, Keniry A, Deloukas P, Reveille JD, Zhou X, Sims AM, Dowling A, Taylor J, Doan T, Davis JC, Savage L, Ward MM, Learch TL, Weisman MH, Brown M. Association scan of 14,500 nonsynonymous snps in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329-1337
  • 17 Ajjan RA, Weetman AP. The pathogenesis of hashimotos thyroiditis: Further developments in our understanding. Horm Metab Res 2015; 47: 702-710
  • 18 Rocci R, Roser NR, Caturegli P. Hashimoto Thyroiditis. In: Shoenfeld Y, Cervera R, Gershwin E (eds.). Diagnostic Criteria in Autoimmune diseases: Totowa, NJ, USA, Humana Press; 2008: 217-228
  • 20 von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 2010; 11: 14-20
  • 20 Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell 2007; 130: 25-35
  • 21 McDevitt HO, Sela M. Genetic control of the antibody response. II. Further analysis of the specificity of determinant-specific control, and genetic analysis of the response to (H,G)-A–L in CBA and C57 mice. J Exp Med 1967; 126: 969-978
  • 22 Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 2013; 14: 301-323
  • 23 Gough SC, Simmonds MJ. The HLA region and autoimmune disease: Associations and mechanisms of action. Curr Genomics 2007; 8: 453-465
  • 24 Grumet FC, Payne RO, Konishi J, Kriss JP. HL-A antigens as markers for disease susceptibility and autoimmunity in graves’ disease. J Clin Endocrinol Metab 1974; 39: 1115-1119
  • 25 Uno H, Sasazuki T, Tamai H, Matsumoto H. Two major genes, linked to HLA and gm, control susceptibility to graves’ disease. Nature 1981; 292: 768-770
  • 26 Chen QY, Huang W, She JX, Baxter F, Volpe R, Maclaren NK. HLA-DRB1*08, DRB1*03/DRB3*0101, and DRB3*0202 are susceptibility genes for graves’ disease in north american caucasians, whereas DRB1*07 is protective. J Clin Endocrinol Metab 1999; 84: 3182-3186
  • 27 Heward JM, Allahabadia A, Daykin J, Carr-Smith J, Daly A, Armitage M, Dodson PM, Sheppard MC, Barnett AH, Franklyn JA, Gough SC. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and graves’ disease: Replication using a population case control and family-based study. J Clin Endocrinol Metab 1998; 83: 3394-3397
  • 28 Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr-Smith J, Gibson SM, Walker N, Tomer Y, Franklyn JA, Todd JA, Gough SC. Regression mapping of association between the human leukocyte antigen region and graves disease. Am J Hum Genet 2005; 76: 157-163
  • 29 Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, Villanueva R, Tomer Y. Possible interaction between hla-drbeta1 and thyroglobulin variants in graves’ disease. Thyroid 2006; 16: 351-355
  • 30 Simmonds MJ, Gough SC. Genetic insights into disease mechanisms of autoimmunity. Br Med Bull 2004; 71: 93-113
  • 31 Bernecker C, Ostapczuk M, Vordenbäumen S, Ehlers M, Thiel A, Schinner S, Willenberg H, Scherbaum WA, Schott M. HLA-A2 phenotype may be protective against graves’ disease but not against hashimoto’s thyroiditis in caucasians. Horm Metab Res 2013; 45: 74-77
  • 32 Simmonds MJ, Howson JM, Heward JM, Carr-Smith J, Franklyn JA, Todd JA, Gough SC. A novel and major association of HLA-C in graves’ disease that eclipses the classical HLA-DRB1 effect. Hum Mol Genet 2007; 16: 2149-2153
  • 33 Zeitlin AA, Heward JM, Newby PR, Carr-Smith JD, Franklyn JA, Gough SC, Simmonds MJ. Analysis of HLA class II genes in hashimoto’s thyroiditis reveals differences compared to graves’ disease. Genes Immun 2008; 9: 358-363
  • 34 Huang CY, Chang TY, Chu CC, Lo FS, Ting WH, Lin CH, Wu YL, Chu SY, Chang SC, Chen WF, Lin CL, Lin WS, Lee YJ. The HLA-B gene and hashimoto disease in han chinese children: A case-control and family-based study. Tissue Antigens 2012; 80: 431-436
  • 35 Hanafusa T, Pujol-Borrell R, Chiovato L, Russell RC, Doniach D, Bottazzo GF. Aberrant expression of HLA-DR antigen on thyrocytes in graves’ disease: Relevance for autoimmunity. Lancet 1983; 2: 1111-1115
  • 36 Tolosa E, Roura C, Martí M, Belfiore A, Pujol-Borrell R. Induction of intercellular adhesion molecule-1 but not of lymphocyte function-associated antigen-3 in thyroid follicular cells. J Autoimmun 1992; 5: 119-135
  • 37 Faure GC, Bensoussan-Lejzerowicz D, Bene MC, Aubert V, Leclere J. Coexpression of CD40 and class II antigen HLA-DR in graves’ disease thyroid epithelial cells. Clin Immunol Immunopathol 1997; 84: 212-215
  • 38 Bottazzo GF, Pujol-Borrell R, Hanafusa T, Feldmann M. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 1983; 2: 1115-1119
  • 39 Tomer Y, Concepcion E, Greenberg DA. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with graves’ disease. Thyroid 2002; 12: 1129-1135
  • 40 Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, Ho K, Tomer Y. A CD40 kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: The role of CD40 tissue-specific expression. Genes Immun 2007; 8: 205-214
  • 41 Heward JM, Simmonds MJ, Carr-Smith J, Foxall H, Franklyn JA, Gough SC. A single nucleotide polymorphism in the CD40 gene on chromosome 20q (GD-2) provides no evidence for susceptibility to graves’ disease in UK caucasians. Clin Endocrinol (Oxf) 2004; 61: 269-272
  • 42 Houston FA, Wilson V, Jennings CE, Owen CJ, Donaldson P, Perros P, Pearce SH. Role of the CD40 locus in graves’ disease. Thyroid 2004; 14: 506-509
  • 43 Kayes T, Fang Y, Yu S, Downey E, Wang S, Braley-Mullen H. Agonistic anti-cd40 induces thyrocyte proliferation and promotes thyroid autoimmunity by increasing CD40 expression on thyroid epithelial cells. J Immunol 2013; 190: 3928-3938
  • 44 Walker LS, Sansom DM. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol 2015; 36: 63-70
  • 45 Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009; 229: 12-26
  • 46 Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 gene polymorphism associated with graves’ disease in a caucasian population. J Clin Endocrinol Metab 1995; 80: 41-45
  • 47 Wang J, Liu L, Ma J, Sun F, Zhao Z, Gu M. Common variants on cytotoxic T lymphocyte antigen-4 polymorphisms contributes to type 1 diabetes susceptibility: Evidence based on 58 studies. PLoS One 2014; 9: e85982
  • 48 Chung SA, Xie G, Roshandel D, Sherva R, Edberg JC, Kravitz M, Dellaripa PF, Hoffman GS, Mahr AD, Seo P, Specks U, Spiera St RF, Clair EW, Stone JH, Plenge RM, Siminovitch KA, Merkel PA, Monach PA. Meta-analysis of genetic polymorphisms in granulomatosis with polyangiitis (wegener’s) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis Rheum 2012; 64: 3463-3471
  • 49 Liu J, Zhang H. -1722T/C polymorphism (rs733618) of CTLA-4 significantly associated with systemic lupus erythematosus (SLE): A comprehensive meta-analysis. Hum Immunol 2013; 74: 341-347
  • 50 Ni J, Qiu LJ, Zhang M, Wen PF, Ye XR, Liang Y, Pan HF, Ye DQ. CTLA-4 CT60 (rs3087243) polymorphism and autoimmune thyroid diseases susceptibility: A comprehensive meta-analysis. Endocr Res 2014; 39: 180-188
  • 51 Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Rønningen KS, Guja C, Ionescu-Tîrgovişte C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC. Association of the t-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506-511
  • 52 Oaks MK, Hallett KM. Cutting edge: A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol 2000; 164: 5015-5018
  • 53 Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW. Lymphoproliferative disorders with early lethality in mice deficient in ctla-4. Science 1995; 270: 985-988
  • 54 Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, Frucht DM, Dumitriu B, Scheinberg P, Folio LR, Frein CA, Price S, Koh C, Heller T, Seroogy CM, Huttenlocher A, Rao VK, Su HC, Kleiner D, Notarangelo LD, Rampertaap Y, Olivier KN, McElwee J, Hughes J, Pittaluga S, Oliveira JB, Meffre E, Fleisher TA, Holland SM, Lenardo MJ, Tangye SG, Uzel G. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 2014; 345: 1623-1627
  • 55 Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, Corsello SM. Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid 2013; 23: 1345-1366
  • 56 Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: Multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 2014; 32: 83-119
  • 57 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337-338
  • 58 Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P, Pearce SH. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of graves’ disease. J Clin Endocrinol Metab 2004; 89: 5862-5865
  • 59 Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, Moser KL, Begovich AB, Carlton VEH, Li W, Lee AT, Ortmann W, Behrens TW, Gregersen PK. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. The American Journal of Human Genetics 2005; 76: 561-571
  • 60 McLachlan SM, Rapoport B. Autoimmune response to the thyroid in humans: Thyroid peroxidase–the common autoantigenic denominator. Int Rev Immunol 2000; 19: 587-618
  • 61 McLachlan SM, Rapoport B. Thyroid peroxidase as an autoantigen. Thyroid 2007; 17: 939-948
  • 62 Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, Rawal R, Roef GL, Plantinga TS, Vermeulen SH, Lahti J, Simmonds MJ, Husemoen LL, Freathy RM, Shields BM, Pietzner D, Nagy R, Broer L, Chaker L, Korevaar TI, Plia MG, Sala C, Völker U, Richards JB, Sweep FC, Gieger C, Corre T, Kajantie E, Thuesen B, Taes YE, Visser WE, Hattersley AT, Kratzsch J, Hamilton A, Li W, Homuth G, Lobina M, Mariotti S, Soranzo N, Cocca M, Nauck M, Spielhagen C, Ross A, Arnold A, van de Bunt M, Liyanarachchi S, Heier M, Grabe HJ, Masciullo C, Galesloot TE, Lim EM, Reischl E, Leedman PJ, Lai S, Delitala A, Bremner AP, Philips DI, Beilby JP, Mulas A, Vocale M, Abecasis G, Forsen T, James A, Widen E, Hui J, Prokisch H, Rietzschel EE, Palotie A, Feddema P, Fletcher SJ, Schramm K, Rotter JI, Kluttig A, Radke D, Traglia M, Surdulescu GL, He H, Franklyn JA, Tiller D, Vaidya B, de Meyer T, Jørgensen T, Eriksson JG, O’Leary PC, Wichmann E, Hermus AR, Psaty BM, Ittermann T, Hofman A, Bosi E, Schlessinger D, Wallaschofski H, Pirastu N, Aulchenko YS, de la Chapelle A, Netea-Maier RT, Gough SC, Meyer Zu Schwabedissen H, Frayling TM, Kaufman JM, Linneberg A, Räikkönen K, Smit JW, Kiemeney LA, Rivadeneira F, Uitterlinden AG, Walsh JP, Meisinger C, den Heijer M, Visser TJ, Spector TD, Wilson SG, Völzke H, Cappola A, Toniolo D, Sanna S, Naitza S, Peeters RP. Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet 2014; 10: e1004123
  • 63 Dai YD, Rao VP, Carayanniotis G. Enhanced iodination of thyroglobulin facilitates processing and presentation of a cryptic pathogenic peptide. J Immunol 2002; 168: 5907-5911
  • 64 Muixí L, Carrascal M, Alvarez I, Daura X, Martí M, Armengol MP, Pinilla C, Abian J, Pujol-Borrell R, Jaraquemada D. Thyroglobulin peptides associate in vivo to HLA-DR in autoimmune thyroid glands. J Immunol 2008; 181: 795-807
  • 65 Nepom GT, Lippolis JD, White FM, Masewicz S, Marto JA, Herman A, Luckey CJ, Falk B, Shabanowitz J, Hunt DF, Engelhard VH, Nepom BS. Identification and modulation of a naturally processed T cell epitope from the diabetes-associated autoantigen human glutamic acid decarboxylase 65 (hgad65). Proc Natl Acad Sci USA 2001; 98: 1763-1768
  • 66 Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in japanese. Hum Mol Genet 2001; 10: 1379-1386
  • 67 Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, Davies TF. Common and unique susceptibility loci in graves and hashimoto diseases: Results of whole-genome screening in a data set of 102 multiplex families. Am J Hum Genet 2003; 73: 736-747
  • 68 Tomer Y, Menconi F, Davies TF, Barbesino G, Rocchi R, Pinchera A, Concepcion E, Greenberg DA. Dissecting genetic heterogeneity in autoimmune thyroid diseases by subset analysis. J Autoimmun 2007; 29: 69-77
  • 69 Ban Y, Tozaki T, Taniyama M, Skrabanek L, Nakano Y, Ban Y, Hirano T. Multiple snps in intron 41 of thyroglobulin gene are associated with autoimmune thyroid disease in the japanese population. PLoS One 2012; 7: e37501
  • 70 Tomer Y. Mechanisms of autoimmune thyroid diseases: From genetics to epigenetics. Annu Rev Pathol 2014; 9: 147-156
  • 71 Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Conception E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J Biol Chem 2011; 286: 31168-31179
  • 72 Chistiakov DA, Savost’anov KV, Turakulov RI. Screening of snps at 18 positional candidate genes, located within the GD-1 locus on chromosome 14q23-q32, for susceptibility to graves’ disease: A TDT study. Mol Genet Metab 2004; 83: 264-270
  • 73 Chistiakov DA, Savost’anov KV, Turakulov RI, Petunina N, Balabolkin MI, Nosikov VV. Further studies of genetic susceptibility to graves’ disease in a russian population. Med Sci Monit 2002; 8: CR180-CR184
  • 74 Cuddihy RM, Dutton CM, Bahn RS. A polymorphism in the extracellular domain of the thyrotropin receptor is highly associated with autoimmune thyroid disease in females. Thyroid 1995; 5: 89-95
  • 75 Ban Y, Greenberg DA, Concepcion ES, Tomer Y. A germline single nucleotide polymorphism at the intracellular domain of the human thyrotropin receptor does not have a major effect on the development of graves’ disease. Thyroid 2002; 12: 1079-1083
  • 76 Kaczur V, Takács M, Szalai C, Falus A, Nagy Z, Berencsi G, Balázs C. Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012-1704) of the TSH receptor gene in graves’ disease. Eur J Immunogenet. 2000. 27. 17-23
  • 77 Simanainen J, Kinch A, Westermark K, Winsa B, Bengtsson M, Schuppert F, Westermark B, Heldin NE. Analysis of mutations in exon 1 of the human thyrotropin receptor gene: High frequency of the D36H and P52T polymorphic variants. Thyroid 1999; 9: 7-11
  • 78 Allahabadia A, Heward JM, Mijovic C, Carr-Smith J, Daykin J, Cockram C, Barnett AH, Sheppard MC, Franklyn JA, Gough SC. Lack of association between polymorphism of the thyrotropin receptor gene and graves’ disease in united kingdom and hong kong chinese patients: Case control and family-based studies. Thyroid 1998; 8: 777-780
  • 79 Kotsa KD, Watson PF, Weetman AP. No association between a thyrotropin receptor gene polymorphism and graves’ disease in the female population. Thyroid 1997; 7: 31-33
  • 80 Ho SC, Goh SS, Khoo DH. Association of graves’ disease with intragenic polymorphism of the thyrotropin receptor gene in a cohort of singapore patients of multi-ethnic origins. Thyroid 2003; 13: 523-528
  • 81 Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, Akamizu T. Multiple snps in intron 7 of thyrotropin receptor are associated with graves’ disease. J Clin Endocrinol Metab 2005; 90: 2898-2903
  • 82 Liu BL, Yang SY, Liu W, Xue LQ, Chen X, Pan CM, Gu ZH, Zhan M, Zhang XM, Liang J, Gao GQ, Du WH, Yuan GY, Ying R, Zhao SX, Song HD. Refined association of TSH receptor susceptibility locus to graves’ disease in the chinese han population. Eur J Endocrinol 2014; 170: 109-119
  • 83 Tomer Y, Barbesino G, Keddache M, Greenberg DA, Davies TF. Mapping of a major susceptibility locus for graves’ disease (GD-1) to chromosome 14q31. J Clin Endocrinol Metab 1997; 82: 1645-1648
  • 84 Tomer Y, Barbesino G, Greenberg DA, Concepcion E, Davies TF. Linkage analysis of candidate genes in autoimmune thyroid disease. III. Detailed analysis of chromosome 14 localizes graves’ disease-1 (GD-1) close to multinodular goiter-1 (MNG-1). International consortium for the genetics of autoimmune thyroid disease. J Clin Endocrinol Metab 1998; 83: 4321-4327
  • 85 Tomer Y, Barbesino G, Greenberg DA, Concepcion E, Davies TF. Mapping the major susceptibility loci for familial graves’ and hashimoto’s diseases: Evidence for genetic heterogeneity and gene interactions. J Clin Endocrinol Metab 1999; 84: 4656-4664
  • 86 Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, Mackay I, Franklyn JA, Connell JM, Wass JA, Wiersinga WM, Hegedus L, Brix T, Robinson BG, Hunt PJ, Weetman AP, Carey AH, Gough SC. Association of the TSHR gene with graves’ disease: The first disease specific locus. Eur J Hum Genet 2005; 13: 1223-1230
  • 87 Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, Kysela B, Carr-Smith JD, Brix T, Hunt PJ, Wiersinga WM, Hegedüs L, Connell J, Wass JA, Franklyn JA, Weetman AP, Heward JM, Gough SC. Association of the thyroid stimulating hormone receptor gene (TSHR) with graves’ disease. Hum Mol Genet 2009; 18: 1704-1713
  • 88 Colobran R, Armengol Mdel P, Faner R, Gärtner M, Tykocinski LO, Lucas A, Ruiz M, Juan M, Kyewski B, Pujol-Borrell R. Association of an SNP with intrathymic transcription of TSHR and graves’ disease: A role for defective thymic tolerance. Hum Mol Genet 2011; 20: 3415-3423
  • 89 Bufalo NE, Dos Santos RB, Marcello MA, Piai RP, Secolin R, Romaldini JH, Ward LS. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the brazilian population to graves’ disease and graves’ ophthalmopathy. J Endocrinol Invest 2015; 38: 555-561
  • 90 Płoski R, Brand OJ, Jurecka-Lubieniecka B, Franaszczyk M, Kula D, Krajewski P, Karamat MA, Simmonds MJ, Franklyn JA, Gough SC, Jarząb B, Bednarczuk T. Thyroid stimulating hormone receptor (TSHR) intron 1 variants are major risk factors for graves’ disease in three european caucasian cohorts. PLoS One 2010; 5: e15512
  • 91 Kursawe R, Paschke R. Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007; 18: 199-207
  • 92 Rapoport B, McLachlan SM. The thyrotropin receptor in graves’ disease. Thyroid 2007; 17: 911-922
  • 93 Brand OJ, Gough SC. Genetics of thyroid autoimmunity and the role of the TSHR. Mol Cell Endocrinol 2010; 322: 135-143
  • 94 Hunt N, Willey KP, Abend N, Balvers M, Jähner D, Northemann W, Ivell R. Novel splicing variants of the human thyrotropin receptor encode truncated polypeptides without a membrane-spanning domain. Endocrine 1995; 3: 233-240
  • 95 Graves PN, Tomer Y, Davies TF. Cloning and sequencing of a 1.3 KB variant of human thyrotropin receptor mrna lacking the transmembrane domain. Biochem Biophys Res Commun 1992; 187: 1135-1143
  • 96 Takeshita A, Nagayama Y, Fujiyama K, Yokoyama N, Namba H, Yamashita S, Izumi M, Nagataki S. Molecular cloning and sequencing of an alternatively spliced form of the human thyrotropin receptor transcript. Biochem Biophys Res Commun 1992; 188: 1214-1219
  • 97 Chen CR, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, McLachlan SM. The thyrotropin receptor autoantigen in graves disease is the culprit as well as the victim. J Clin Invest 2003; 111: 1897-1904
  • 98 Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24: 571-606
  • 99 Mathis D, Benoist C. Aire. Annu Rev Immunol 2009; 27: 287-312
  • 100 Julier C, Hyer RN, Davies J, Merlin F, Soularue P, Briant L, Cathelineau G, Deschamps I, Rotter JI, Froguel P. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in hla-dr4-dependent diabetes susceptibility. Nature 1991; 354: 155-159
  • 101 Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289-292
  • 102 Pugliese A, Zeller M, Fernandez A, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15: 293-297
  • 103 Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F, Baralle FE, Eymard B, Tranchant C, Gajdos P, Vincent A, Willcox N, Beeson D, Kyewski B, Garchon HJ. An irf8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934-937
  • 104 Sospedra M, Ferrer-Francesch X, Domínguez O, Juan M, Foz-Sala M, Pujol-Borrell R. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens. J Immunol 1998; 161: 5918-5929
  • 105 Moeller LC, Kimura S, Kusakabe T, Liao XH, Van Sande J, Refetoff S. Hypothyroidism in thyroid transcription factor 1 haploinsufficiency is caused by reduced expression of the thyroid-stimulating hormone receptor. Mol Endocrinol 2003; 17: 2295-2302
  • 106 Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, Inabnet WB, Owen R, Zhang W, Tomer Y. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc Natl Acad Sci USA 2014; 111: 12562-12567
  • 107 Halsted WS. Significance of the thymus gland in graves’ disease. Bull Johns Hopkins Hosp 1914; 25: 223-234
  • 108 Wortsman J, McConnachie P, Baker JR, Burman KD. Immunoglobulins that cause thymocyte proliferation from a patient with graves’ disease and an enlarged thymus. Am J Med 1988; 85: 117-121
  • 109 Murakami M, Hosoi Y, Negishi T, Kamiya Y, Miyashita K, Yamada M, Iriuchijima T, Yokoo H, Yoshida I, Tsushima Y, Mori M. Thymic hyperplasia in patients with graves’ disease. Identification of thyrotropin receptors in human thymus. J Clin Invest 1996; 98: 2228-2234
  • 110 Murakami M, Hosoi Y, Araki O, Morimura T, Imamura M, Ogiwara T, Mizuma H, Mori M. Expression of thyrotropin receptors in rat thymus. Life Sci 2001; 68: 2781-2787
  • 111 van der Weerd K, van Hagen PM, Schrijver B, Heuvelmans SJ, Hofland LJ, Swagemakers SM, Bogers AJ, Dik WA, Visser TJ, van Dongen JJ, van der Lelij AJ, Staal FJ. Thyrotropin acts as a t-cell developmental factor in mice and humans. Thyroid 2014; 24: 1051-1061
  • 112 Kubicky RA, Faerber EN, de Chadarevian JP, Wu S, Rezvani I, De Luca F. An adolescent with a mediastinal mass, diagnosed with graves disease and thymic hyperplasia. Pediatrics 2010; 125: e433-e437
  • 113 Smith TJ. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy. Nat Rev Endocrinol 2015; 11: 171-181
  • 114 Lu S, Guan Q, Liu Y, Wang H, Xu W, Li X, Fu Y, Gao L, Zhao J, Wang X. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis 2012; 11: 17
  • 115 Bhattacharyya KK, Coenen MJ, Bahn RS. Thyroid transcription factor-1 in orbital adipose tissues: Potential role in orbital thyrotropin receptor expression. Thyroid 2005; 15: 422-426
  • 116 Agretti P, Chiovato L, De Marco G, Marcocci C, Mazzi B, Sellari-Franceschini S, Vitti P, Pinchera A, Tonacchera M. Real-time PCR provides evidence for thyrotropin receptor mrna expression in orbital as well as in extraorbital tissues. Eur J Endocrinol 2002; 147: 733-739
  • 117 Akirav EM, Ruddle NH, Herold KC. The role of AIRE in human autoimmune disease. Nat Rev Endocrinol 2011; 7: 25-33
  • 118 Giménez-Barcons M, Colobran R, Gómez-Pau A, Marín-Sánchez A, Casteràs A, Obiols G, Abella R, Fernández-Doblas J, Tonacchera M, Lucas-Martín A, Pujol-Borrell R. Graves’ disease tshr-stimulating antibodies (tsabs) induce the activation of immature thymocytes: A clue to the riddle of tsabs generation?. J Immunol 2015;
  • 119 Rullo OJ, Tsao BP. Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 2013; 72 (Suppl. 02) ii56-ii61
  • 120 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature 2009; 461: 747-753
  • 121 Hunt KA, Mistry V, Bockett NA, Ahmad T, Ban M, Barker JN, Barrett JC, Blackburn H, Brand O, Burren O, Capon F, Compston A, Gough SC, Jostins L, Kong Y, Lee JC, Lek M, MacArthur DG, Mansfield JC, Mathew CG, Mein CA, Mirza M, Nutland S, Onengut-Gumuscu S, Papouli E, Parkes M, Rich SS, Sawcer S, Satsangi J, Simmonds MJ, Trembath RC, Walker NM, Wozniak E, Todd JA, Simpson MA, Plagnol V, van Heel DA. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 2013; 498: 232-235
  • 122 Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA 2003; 100: 15119-15124
  • 123 Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: From epidemiology to etiology. J Autoimmun 2008; 30: 58-62
  • 124 Kurylowicz A, Kula D, Ploski R, Skorka A, Jurecka-Lubieniecka B, Zebracka J, Steinhof-Radwanska K, Hasse-Lazar K, Hiromatsu Y, Jarzab B, Bednarczuk T. Association of CD40 gene polymorphism (C-1T) with susceptibility and phenotype of graves’ disease. Thyroid 2005; 15: 1119-1124
  • 125 Chistiakov DA, Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 2003; 31: 21-36
  • 126 Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, Vella A, Nutland S, Rance HE, Maier L, Barratt BJ, Guja C, Ionescu-Tîrgoviste C, Savage DA, Dunger DB, Widmer B, Strachan DP, Ring SM, Walker N, Clayton DG, Twells RC, Gough SC, Todd JA. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020-3023
  • 127 Heward JM, Brand OJ, Barrett JC, Carr-Smith JD, Franklyn JA, Gough SC. Association of PTPN22 haplotypes with graves’ disease. J Clin Endocrinol Metab 2007; 92: 685-690
  • 128 Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, Gough SC. Association of the interleukin-2 receptor alpha (il-2ralpha)/CD25 gene region with graves’ disease using a multilocus test and tag snps. Clin Endocrinol (Oxf) 2007; 66: 508-512
  • 129 Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S, Sawada T, Bae SC, Tokuhiro S, Chang X, Sekine A, Takahashi A, Tsunoda T, Ohnishi Y, Kaufman KM, Kang CP, Kang C, Otsubo S, Yumura W, Mimori A, Koike T, Nakamura Y, Sasazuki T, Yamamoto K. A functional variant in FCRL3, encoding fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 2005; 37: 478-485
  • 130 Simmonds MJ, Heward JM, Carr-Smith J, Foxall H, Franklyn JA, Gough SC. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of graves’ disease. J Clin Endocrinol Metab 2006; 91: 1056-1061
  • 131 Danoy P, Wei M, Johanna H, Jiang L, He D, Sun L, Zeng X, Visscher PM, Brown MA, Xu H. Association of variants in MMEL1 and CTLA4 with rheumatoid arthritis in the han chinese population. Ann Rheum Dis 2011; 70: 1793-1797
  • 132 de Roux N, Shields DC, Misrahi M, Ratanachaiyavong S, McGregor AM, Milgrom E. Analysis of the thyrotropin receptor as a candidate gene in familial graves’ disease. J Clin Endocrinol Metab 1996; 81: 3483-3486
  • 133 Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, Morris JC. Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J Clin Endocrinol Metab 1999; 84: 3328-3335
  • 134 Chistyakov DA, Savost’anov KV, Turakulov RI, Petunina NA, Trukhina LV, Kudinova AV, Balabolkin MI, Nosikov VV. Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab 2000; 70: 214-218
  • 135 Mühlberg T, Herrmann K, Joba W, Kirchberger M, Heberling HJ, Heufelder AE. Lack of association of nonautoimmune hyperfunctioning thyroid disorders and a germline polymorphism of codon 727 of the human thyrotropin receptor in a european caucasian population. J Clin Endocrinol Metab 2000; 85: 2640-2643
  • 136 Villanueva R, Inzerillo AM, Tomer Y, Barbesino G, Meltzer M, Concepcion ES, Greenberg DA, MacLaren N, Sun ZS, Zhang DM, Tucci S, Davies TF. Limited genetic susceptibility to severe graves’ ophthalmopathy: No role for CTLA-4 but evidence for an environmental etiology. Thyroid 2000; 10: 791-798
  • 137 Akamizu T, Sale MM, Rich SS, Hiratani H, Noh JY, Kanamoto N, Saijo M, Miyamoto Y, Saito Y, Nakao K, Bowden DW. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in japanese patients. Thyroid 2000; 10: 851-858
  • 138 Yin X, Latif R, Bahn R, Tomer Y, Davies TF. Influence of the TSH receptor gene on susceptibility to graves’ disease and graves’ ophthalmopathy. Thyroid 2008; 18: 1201-1206
  • 139 Gu LQ, Zhu W, Zhao SX, Zhao L, Zhang MJ, Cui B, Song HD, Ning G, Zhao YJ. Clinical associations of the genetic variants of CTLA-4, tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with graves’ disease. Clin Endocrinol (Oxf) 2010; 72: 248-255
  • 140 Shao L, Jiang H, Liang J, Niu X, Teng L, Zhang H. Study on the relationship between TSHR gene and thyroid diseases. Cell Biochem Biophys 2011; 61: 377-382
  • 141 Xu LD, Zhang XL, Sun HM, Liu P, Ji GH, Guan RW, Yu Y, Jin Y, Chen F, Fu SB. Lack of association between thyroid-stimulating hormone receptor haplotypes and graves’ disease in a northern chinese population. Tissue Antigens 2011; 77: 2
  • 142 Liu L, Wu HQ, Wang Q, Zhu YF, Zhang W, Guan LJ, Zhang JA. Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a chinese han population. Endocr J 2012; 59: 717-723
  • 143 Yin X, Latif R, Bahn R, Davies TF. Genetic profiling in graves’ disease: Further evidence for lack of a distinct genetic contribution to graves’ ophthalmopathy. Thyroid 2012; 22: 730-736
  • 144 Inoue N, Watanabe M, Katsumata Y, Hidaka Y, Iwatani Y. Different genotypes of a functional polymorphism of the TSHR gene are associated with the development and severity of graves’ and hashimoto’s diseases. Tissue Antigens 2013; 82: 288-290
  • 145 Tomer Y, Hasham A, Davies TF, Stefan M, Concepcion E, Keddache M, Greenberg DA. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. J Clin Endocrinol Metab 2013; 98: E144-E152
  • 146 Jurecka-Lubieniecka B, Ploski R, Kula D, Szymanski K, Bednarczuk T, Ambroziak U, Hasse-Lazar K, Hyla-Klekot L, Tukiendorf A, Kolosza Z, Jarzab B. Association between polymorphisms in the TSHR gene and graves’ orbitopathy. PLoS One 2014; 9: e102653