Planta Med 2015; 81(04): 279-285
DOI: 10.1055/s-0034-1396241
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Anti-Hyperuricemic and Nephroprotective Effects of Rhein in Hyperuricemic Mice

Zhaoqing Meng
1   State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Yunxia Yan
1   State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
,
Zhaohui Tang
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Changrun Guo
1   State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
,
Na Li
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Wenzhe Huang
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Gang Ding
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Zhenzhong Wang
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Wei Xiao
2   Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
,
Zhonglin Yang
1   State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
› Author Affiliations
Further Information

Publication History

received 14 July 2014
revised 17 December 2014

accepted 02 January 2015

Publication Date:
11 March 2015 (online)

Abstract

Hyperuricemia has been considered to be a key risk factor for kidney disease. The formation of uric acid crystals in the kidney further stimulates an intensive inflammatory response. Rhein possesses various pharmacological activities, including anti-inflammatory, antioxidative, antitumor, purgative effects, and so on. To our knowledge, no previous work has been reported about the therapeutic effect of rhein on urate nephropathy. In this study, a model of hyperuricemia and nephropathy induced by adenine and ethambutol in mice was established. Meanwhile, the potential beneficial effects and mechanisms of rhein on hyperuricemia and nephropathy were also investigated. The results demonstrated that rhein significantly decreased the serum uric acid level by inhibiting the xanthine oxidase activity and increasing the excretion of urinary uric acid. In addition, rhein also markedly improved kidney damage related to hyperuricemia. Further investigation indicated that rhein improved the symptoms of nephropathy through decreasing the production of proinflammatory cytokines, including interleukin 1β, prostaglandin E2, and tumor necrosis factor-α and inhibiting the expression of transforming growth factor-β1. The present study suggests that rhein may have a considerable potential for development as an anti-hyperuricemic and nephroprotective agent for clinical application.

Supporting Information

 
  • References

  • 1 Wortmann R. Gout and hyperuricemia. Curr Opin Rheumatol 2002; 14: 281-286
  • 2 Feig D, Rodriguez-Iturbe B, Nakagawa T, Johnson R. Nephron number, uric acid, and renal microvascular disease in the pathogenesis of essential hypertension. Hypertension 2006; 48: 25-26
  • 3 Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237-241
  • 4 Schlesinger N. Management of acute and chronic gouty arthritis: present state-of-the-art. Drugs 2004; 64: 2399-2416
  • 5 Chen I, Kuo M, Hwang S, Chang J, Chen H. Allopurinol-induced severe hypersensitivity with acute renal failure. Kaohsiung J Med Sci 2005; 21: 228-232
  • 6 Horiuchi H, Ota M, Nishimura S, Kaneko H, Kasahara Y, Ohta T, Komoriya K. Allopurinol induces renal toxicity by impairing pyrimidine metabolism in mice. Life Sci 2000; 66: 2051-2070
  • 7 Mari E, Ricci F, Imberti D, Gallerani M. Agranulocytosis: an adverse effect of allopurinol treatment. Ital J Med 2011; 5: 120-123
  • 8 Wu X, Liu L, Xie H, Liao J, Zhou X, Wan J, Yu K, Li J, Zhang Y. Tanshinone IIA prevents uric acid nephropathy in rats through NF-κB inhibition. Planta Med 2012; 78: 866-873
  • 9 Chen L, Lan Z, Zhou Y, Li F, Zhang X, Zhang C, Yang Z, Li P. Astilbin attenuates hyperuricemia and ameliorates nephropathy in fructose-induced hyperuricemic rats. Planta Med 2011; 77: 1769-1773
  • 10 Shi Y, Wang C, Wang X, Zhang Y, Liu L, Wang R, Ye J, Hu L, Kong L. Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice. J Ethnopharmacol 2012; 143: 896-904
  • 11 Hou S, Zhu W, Pang M, Jeffry J, Zhou L. Protective effect of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats induced by yeast and potassium oxonate. Food Chem Toxicol 2014; 64: 57-64
  • 12 Chen L, Lan Z, Lin Q, Mi X, He Y, Wei L, Lin Y, Zhang Y, Deng X. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice. Food Chem Toxicol 2013; 52: 28-35
  • 13 State Administration of Traditional Chinese Medicine of Peopleʼs Republic of China. Zhong-hua-ben-cao. Shanghai: Shanghai Science and Technology Publisher; 1999: 708-721
  • 14 Legendre F, Heuze A, Boukerrouche K, Leclercq S, Boumediene K, Galera P, Domagala F, Pujol J, Ficheux H. Rhein, the metabolite of diacerhein, reduces the proliferation of osteoarthritic chondrocytes and synoviocytes without inducing apoptosis. Scand J Rheumatol 2009; 38: 104-111
  • 15 Huang S, Yeh S, Hong C. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 1995; 58: 1365-1371
  • 16 Hsia T, Yang J, Chen G, Chiu T, Lu H, Yang M, Yu F, Liu K, Lai K, Lin C, Chung J. The roles of endoplasmic reticulum stress and Ca2+ on rhein-induced apoptosis in A-549 human lung cancer cells. Anticancer Res 2009; 29: 309-318
  • 17 Zhang W, Li F, Bao J, Wang S, Shang G, Li JC, Wang C. Regulative effects of aquaporin 4 expression by rhein in rhubarb to intestinal epithelial cell line LoVo. Zhong Yao Cai 2008; 31: 702-706
  • 18 Gao Q, Qin W, Jia Z, Zheng J, Zeng C, Li L, Liu Z. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Med 2010; 76: 27-33
  • 19 He D, Lee L, Yang J, Wang X. Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy. Biol Pharm Bull 2011; 34: 1219-1226
  • 20 Gibson T. Hyperuricemia, gout and the kidney. Curr Opin Rheumatol 2012; 24: 127-131
  • 21 Pillinger M, Rosenthal P, Abeles A. Hyperuricemia and gout: new insights into pathogenesis and treatment. Bull NYU Hosp Jt Dis 2007; 65: 215-221
  • 22 So A. Developments in the scientific and clinical understanding of gout. Arthritis Res Ther 2008; 10: 221
  • 23 Roncal C, Mu W, Croker B, Reungjui S, Ouyang X, Tabah-Fisch I, Johnson R, Ejaz A. Effect of elevated serum uric acid on cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 2007; 292: 116-122
  • 24 Philips F, Thiersch J, Bendich A. Adenine intoxication in relation to in vivo formation and deposition of 2, 8-dioxya-denine in renal tubules. J Pharmacol Exp Ther 1952; 104: 20-30
  • 25 Hu Q, Miao M, Lu G, Ji H. Effects of quercetin on expression of renal NLRP3 and TLRs in rats with uric acid nephropathy. Zhong Cao Yao 2013; 44: 3496-3502
  • 26 Liu J, Xu L, Xu Y. Anti-gout active fractions in Tongfeng Granule. Zhong Cao Yao 2013; 44: 590-594
  • 27 Sorbera L, Sharanya S, Dulsat C, Rosa E. Therapeutic targets for gout. Drugs Future 2010; 5: 333-337
  • 28 Chen C, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock K. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006; 116: 2262-2271
  • 29 Guan Z, Buckman S, Miller B, Springer L, Morrison A. Interleukin-1beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p 38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem 1998; 273: 28670-28676
  • 30 Beyaert R, Fiers W. Tumor Necrosis Factor and lymphotoxin. In: Mire-Sluis AR, Thorpe R, editors Cytokines. San Diego: Academic Press; 1998: 335-359
  • 31 Nakanishi M, Rosenberg D. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 2013; 35: 123-137
  • 32 Eddy A. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996; 7: 2495-2508
  • 33 Border W, Noble N. Transforming growth factor beta tissue fibrosis. N Engl J Med 1994; 331: 1286-1292
  • 34 Hu Y, Ye S, Zhao L, Zheng M, Chen Y. Hydrochloride pioglitazone decreases urinary TGF-β1 excretion in type 2 diabetics. Eur J Clin Invest 2010; 40: 571-574
  • 35 Chen G, Xu S. Research progress for animal hyperuricemia model. Chin Pharm Bull 2004; 20: 369-373
  • 36 Guo C, Han F, Zhang C, Xiao W, Yang Z. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med 2014; 80: 269-276
  • 37 Mo S, Zhou F, Lv Y, Hu Q, Zhang D, Kong L. Hypouricemic action of selected flavonoids in mice: structure-activity relationships. Biol Pharm Bull 2007; 30: 1551-1556
  • 38 Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with folin-phenol reagent. J Biol Chem 1951; 193: 265-275