Synthesis 2013; 45(23): 3228-3232
DOI: 10.1055/s-0033-1339616
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

Zinc-Mediated Regiodiverse Synthesis of Vinyl Bromide Derivatives and Their in situ Palladium-Catalysed Cross-Coupling Reactions

Anne Miersch
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany    Fax: +49(6421)2825677   Email: Hilt@chemie.uni-marburg.de
,
Corinna Kohlmeyer
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany    Fax: +49(6421)2825677   Email: Hilt@chemie.uni-marburg.de
,
Gerhard Hilt*
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany    Fax: +49(6421)2825677   Email: Hilt@chemie.uni-marburg.de
› Author Affiliations
Further Information

Publication History

Received: 02 July 2013

Accepted after revision: 11 July 2013

Publication Date:
15 August 2013 (online)


Dedicated to Prof. Dr. Reinhard W. Hoffmann on the occasion of his 80th birthday. Many thanks for the fruitful and entertaining discussions.

Abstract

The synthesis of vinyl bromide derivatives was realised by a zinc-mediated addition of a benzylic bromide to a terminal alkyne. The geometry of the C=C bond is dependent on the amount of zinc powder applied. When 5 mol% of Zn is used, the Z-configured vinyl bromide is generated while with 150 mol% the E-geometry is obtained predominantly. In a three-component one-pot reaction, the in situ generated vinyl bromides were reacted further in a palladium-catalysed Suzuki cross-coupling reaction utilizing aromatic boronic acids to obtain trisubstituted double bonds in good overall yields. The reactions were conducted on a 5–20 mmol scale to visualise that the reactions are also capable of generating larger amounts of products.

Supporting Information

 
  • References


    • For key references, see:
    • 1a Negishi E.-I, Huang Z, Wang GW, Mohan S, Wang C. Acc. Chem. Res. 2008; 41: 1474
    • 1b Mori M. Eur. J. Org. Chem. 2007; 4981
    • 2a Nozaki K, Yamashita M, Okuno Y. Eur. J. Org. Chem. 2011; 3951
    • 2b Negishi E.-I, Xu S, Lee C.-T, Rao H. Adv. Synth. Catal. 2011; 353: 2981
    • 2c Negishi E.-I, Wang G, Rao H, Xu Z. J. Org. Chem. 2010; 75: 3151
    • 2d Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
    • 2e Negishi E.-I, Tan Z. Angew. Chem. Int. Ed. 2006; 45: 762
    • 2f Zhou CX, Larock RC. J. Org. Chem. 2005; 70: 3765
    • 2g Mori M, Sato Y, Takimoto M, Shimizu K. Org. Lett. 2005; 7: 195
    • 2h Kamei T, Itami K, Yoshida Y. Adv. Synth. Catal. 2004; 346: 1824
    • 2i Fallis AG, Forgione P. Tetrahedron 2001; 57: 5899
    • 2j Li M.-M, Zhang Q, Yue H.-L, Ma L, Ji J.-X. Tetrahedron Lett. 2012; 53: 317
    • 2k Murakami K, Yorimitsu H, Oshima K. Chem. Eur. J. 2010; 16: 7688
    • 2l Biswas S, Maiti S, Jana U. Eur. J. Org. Chem. 2009; 2354
    • 2m Li H.-H, Jin Y.-H, Wang J.-Q, Tian S.-K. Org. Biomol. Chem. 2009; 16: 3219
    • 2n Liu Z, Wang Zhao JY, Zhou B. Adv. Synth. Catal. 2009; 351: 371

      For the synthesis of alkenyl halides, see:
    • 3a Spaggiari A, Vaccari D, Davoli P, Torre G, Prati F. J. Org. Chem. 2007; 72: 2216
    • 3b Barluenga J, Palomas D, Rubio E, González JM. Org. Lett. 2007; 9: 2823
    • 3c Lee SI, Hwang GS, Ryu DH. Synlett 2007; 59
    • 3d Yadav JS, Reddy BV. S, Gupta MK, Pandey SK. J. Mol. Catal. A: Chem. 2007; 264: 309
    • 3e Durandetti M, Périchon J.  Synthesis 2004; 3079
    • 3f Pawluć P, Hreczycho G, Szudkowska J, Kubicki M, Marciniec B.  Org. Lett. 2009; 11: 3390
    • 3g Kamei K, Maeda N, Tatsuoka T. Tetrahedron Lett. 2005; 46: 229
    • 3h Yadav JS, Reddy BV. S, Gupta MK, Eeshwaraiah B. Synthesis 2005; 57
    • 3i Blum J, Gelman D, Baidossi W, Shakh E, Rosenfeld A, Wassermann BC, Frick M, Heymer B, Schutte S, Wernik S, Schumann H. J. Org. Chem. 1997; 62: 8681
    • 3j Sun JW, Kozmin SA. J. Am. Chem. Soc. 2005; 127: 13512
    • 3k Gao F, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10961
    • 3l Kuang C, Yang Q, Senboku H, Tokuda M. Synthesis 2005; 1319
    • 3m Ye C, Shreeve JM.  J. Org. Chem. 2004; 69: 8561
    • 3n Nakajima R, Delas C, Takayama Y, Sato F. Angew. Chem. Int. Ed. 2002; 41: 3023
    • 3o Li W, Li J, Wan Z.-K, Wu J, Massefski W. Org. Lett. 2007;  9: 4607
    • 3p Jennings MP, Cork EA, Ramachandran PV. J. Org. Chem. 2000; 65: 8763
    • 3q Takahashi T, Sun WH, Xi CJ, Ubayama H, Xi ZF. Tetrahedron 1998; 54: 715
    • 3r Stüdemann T, Ibrahim-Ouali M, Knochel P. Tetrahedron 1998; 54: 1299
    • 3s Wang C, Tobrman T, Xu Z, Negishi E.-i.  Org. Lett. 2009; 11: 4092
    • 3t Takahashi T, Kondakov DY, Xi ZF, Suzuki N. J. Am. Chem. Soc. 1995; 117: 5871
  • 4 Miersch A, Hilt G. Chem. Eur. J. 2012; 18: 9798
    • 5a Monteiro AL, Nunes CM, Steffens D. Synlett 2007; 103
    • 5b Kirchhoff JH, Netherton MR, Hill ID, Fu GC. J. Am. Chem. Soc. 2002;  124: 13662
    • 5c Song C, Ma Y, Chai Q, Ma C, Jiang W, Andrus MB.  Tetrahedron 2005; 61: 7438
    • 5d Lu G.-P, Voigtritter KR, Cai C, Lipshutz BH.  J. Org. Chem. 2012;  77: 3700
    • 5e Yamada YM. A, Takeda K, Takashashi H, Ikegami S. J. Org. Chem. 2003; 68: 7733
    • 5f Alacid E, Nájera C. J. Org. Chem. 2009;  74: 2321
    • 5g Liron F, Fosse C, Pernolet A, Roulland E.  J. Org. Chem. 2007; 72: 2220