Semin Reprod Med 2009; 27(3): 240-249
DOI: 10.1055/s-0029-1216277
© Thieme Medical Publishers

Estradiol Is a Potent Protective, Restorative, and Trophic Factor after Brain Injury

Candice M. Brown1 , Shotaro Suzuki1 , Karen A.B Jelks4 , Phyllis M. Wise1 , 2 , 3
  • 1Department of Physiology and Biophysics, University of Washington, Seattle, Washington
  • 2Department of Biology, University of Washington, Seattle, Washington
  • 3Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
  • 4Department of Neurobiology and Behavior, University of California, Davis, California
Further Information

Publication History

Publication Date:
28 April 2009 (online)

ABSTRACT

Estrogens are a group of pleiotropic steroid hormones that exhibit diverse mechanisms of action in multiple physiologic systems. Over the past 30 years, biomedical science has begun to appreciate that endogenous estrogens and their receptors display important roles beyond the reproductive system. Our growing appreciation of novel, nonreproductive functions for estrogens has fundamentally contributed to our knowledge of their role in human health and disease. Recent findings from the Women's Health Initiative have caused clinicians and scientists to question whether estrogens are protective factors or risk factors. In light of the dichotomy between basic science and clinical studies, this review will attempt to reconcile differences between them. We will focus on studies from our laboratory and others highlighting the beneficial properties of the most abundant endogenous estrogen, 17β-estradiol, using in vivo and in vitro models of cerebral ischemia and neuronal injury. These studies demonstrate that 17β-estradiol powerfully protects the brain using multiple molecular mechanisms that promote: (1) decreased cell death, (2) increased neurogenesis, (3) an enhancement of neurotrophic support, and (4) the suppression of proinflammatory pathways.

REFERENCES

  • 1 Turgeon J L, Carr M C, Maki P M, Mendelsohn M E, Wise P M. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: insights from basic science and clinical studies.  Endocr Rev. 2006;  27 575-605
  • 2 Behl C. Oestrogen as a neuroprotective hormone.  Nat Rev Neurosci. 2002;  3 433-442
  • 3 McCullough L D, Hurn P D. Estrogen and ischemic neuroprotection: an integrated view.  Trends Endocrinol Metab. 2003;  14 228-235
  • 4 Anderson G L, Limacher M, Assaf A R et al.. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial.  JAMA. 2004;  291 1701-1712
  • 5 Rosamond W, Flegal K, Furie K et al.. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.  Circulation. 2008;  117 e25-e146
  • 6 Dirnagl U, Iadecola C, Moskowitz M A. Pathobiology of ischaemic stroke: an integrated view.  Trends Neurosci. 1999;  22 391-397
  • 7 Gibson C L, Gray L J, Murphy S P, Bath P M. Estrogens and experimental ischemic stroke: a systematic review.  J Cereb Blood Flow Metab. 2006;  26 1103-1113
  • 8 Dubal D B, Kashon M, Pettigrew L et al.. Estradiol protects against ischemic injury.  J Cereb Blood Flow Metab. 1998;  18 1253-1258
  • 9 Dubal D B, Zhu H, Yu J et al.. Estrogen receptor alpha, not beta is a critical link in estradiol-mediated protection against brain injury.  Proc Natl Acad Sci U S A. 2001;  98 1952-1957
  • 10 Levin E R. Integration of the extranuclear and nuclear actions of estrogen 210/me.2004-0390.  Mol Endocrinol. 2005;  19 1951-1959
  • 11 Dubal D B, Rau S W, Shughrue P J et al.. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ER{alpha} in estradiol-mediated protection against delayed cell death.  Endocrinology. 2006;  147 3076-3084
  • 12 Dubal D B, Shughrue P J, Wilson M E, Merchenthaler I, Wise P M. Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors.  J Neurosci. 1999;  19 6385-6393
  • 13 Suzuki S, Brown C M, Dela Cruz C D et al.. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions.  Proc Natl Acad Sci U S A. 2007;  104 6013-6018
  • 14 Suzuki S, Gerhold L M, Bottner M et al.. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta.  J Comp Neurol. 2007;  500 1064-1075
  • 15 Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms.  Neurol Res. 2004;  26 835-845
  • 16 Rau S W, Dubal D B, Bottner M, Gerhold L M, Wise P M. Estradiol attenuates programmed cell death after stroke-like injury.  J Neurosci. 2003;  23 11420-11426
  • 17 Rau S W, Dubal D B, Bottner M, Wise P M. Estradiol differentially regulates c-Fos after focal cerebral ischemia.  J Neurosci. 2003;  23 10487-10494
  • 18 Taupin P, Gage F H. Adult neurogenesis and neural stem cells of the central nervous system in mammals.  J Neurosci Res. 2002;  69 745-749
  • 19 Alvarez-Buylla A, Garcia-Verdugo J M. Neurogenesis in adult subventricular zone.  J Neurosci. 2002;  22 629-634
  • 20 Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain.  Science. 1994;  264 1145-1148
  • 21 Tonchev A B, Yamashima T, Sawamoto K, Okano H. Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia.  J Neurosci Res. 2005;  81 776-788
  • 22 Goings G E, Sahni V, Szele F G. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury.  Brain Res. 2004;  996 213-226
  • 23 Arvidsson A, Collin T, Krik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke.  Nat Med. 2002;  8 963-970
  • 24 Paganini-Hill A. Hormone replacement therapy and stroke: risk, protection or no effect?.  Maturitas. 2001;  38 243-261
  • 25 Wassertheil-Smoller S, Hendrix S L, Limacher M et al.. Effect of estrogen plus progestin on stroke in postmenopausal women.  JAMA. 2003;  289 2673-2684
  • 26 Rossouw J E, Anderson G L, Prentice R L et al.. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial.  JAMA. 2002;  288 321-333
  • 27 Viscoli C M, Brass L M, Kernan W N et al.. A clinical trial of estrogen-replacement therapy after ischemic stroke.  N Engl J Med. 2001;  345 1243-1249
  • 28 Bushnell C D, Hurn P, Colton C et al.. Advancing the study of stroke in women: summary and recommendations for future research from an NINDS-sponsored multidisciplinary working group.  Stroke. 2006;  37 2387-2399
  • 29 Turgeon J L, McDonnell D P, Martin K A, Wise P M. Hormone therapy: physiological complexity belies therapeutic simplicity.  Science. 2004;  304 1269-1273
  • 30 Bushnell C D. Hormone replacement therapy and stroke: the current state of knowledge and directions for future research.  Semin Neurol. 2006;  26 123-130
  • 31 Miller V M, Clarkson T B, Harman S M et al.. Women, hormones, and clinical trials: a beginning, not an end.  J Appl Physiol. 2005;  99 381-383
  • 32 Harman S M, Naftolin F, Brinton E A, Judelson D R. Is the estrogen controversy over? Deconstructing the Women's Health Initiative study: a critical evaluation of the evidence.  Ann N Y Acad Sci. 2005;  1052 43-56
  • 33 Rossouw J E, Prentice R L, Manson J E et al.. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause.  JAMA. 2007;  297 1465-1477
  • 34 Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases.  Front Neuroendocrinol. 2008;  29 507-519
  • 35 Vegeto E, Bonincontro C, Pollio G et al.. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia.  J Neurosci. 2001;  21 1809-1818
  • 36 Czlonkowska A, Ciesielska A, Gromadzka G, Kurkowska-Jastrzebska I. Gender differences in neurological disease.  Endocrine. 2006;  29 243-256
  • 37 Tiwari-Woodruff S, Morales L B, Lee R, Voskuhl R R. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment.  Proc Natl Acad Sci U S A. 2007;  104 14813-14818
  • 38 Vegeto E, Belcredito S, Etteri S et al.. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol.  Proc Natl Acad Sci U S A. 2003;  100 9614-9619
  • 39 Lewis D K, Johnson A B, Stohlgren S, Harms A, Sohrabji F. Effects of estrogen receptor agonists on regulation of the inflammatory response in astrocytes from young adult and middle-aged female rats.  J Neuroimmunol. 2008;  195 47-59
  • 40 Baker A E, Brautigam V M, Watters J J. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta.  Endocrinology. 2004;  145 5021-5032
  • 41 Brown C M, Dela Cruz C D, Yang E, Wise P M. Inducible nitric oxide synthase and estradiol exhibit complementary neuroprotective roles after ischemic brain injury.  Exp Neurol. 2008;  210 782-787
  • 42 Toran-Allerand C D. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation.  Psychoneuroendocrinology. 1991;  16 7-24
  • 43 Toran-Allerand C D. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation.  Brain Res. 1976;  106 407-412
  • 44 Woolley C S, McEwen B S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat.  J Neurosci. 1992;  12 2549-2554
  • 45 Woolley C S, Gould E, Frankfurt M, McEwen B S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons.  J Neurosci. 1990;  10 4035-4039
  • 46 Murphy D D, Segal M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones.  J Neurosci. 1996;  16 4059-4068
  • 47 Brinton R D, Tran J, Proffitt P, Montoya M. 17 beta-Estradiol enhances the outgrowth and survival of neocortical neurons in culture.  Neurochem Res. 1997;  22 1339-1351
  • 48 Lee S J, McEwen B S. Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications.  Annu Rev Pharmacol Toxicol. 2001;  41 569-591
  • 49 Brann D W, Dhandapani K, Wakade C, Mahesh V B, Khan M M. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications.  Steroids. 2007;  72 381-405
  • 50 Dominguez R, Liu R, Baudry M. 17-beta-Estradiol-mediated activation of extracellular-signal regulated kinase, phosphatidylinositol 3-kinase/protein kinase B-Akt and N-methyl-D-aspartate receptor phosphorylation in cortical synaptoneurosomes.  J Neurochem. 2007;  101 232-240
  • 51 Pozzo-Miller L D, Inoue T, Murphy D D. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.  J Neurophysiol. 1999;  81 1404-1411
  • 52 Jelks K B, Wylie R, Floyd C L, McAllister A K, Wise P. Estradiol targets synaptic proteins to induce glutamatergic synapse formation in cultured hippocampal neurons: critical role of estrogen receptor-alpha.  J Neurosci. 2007;  27 6903-6913
  • 53 McEwen B, Akama K, Alves S et al.. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation.  Proc Natl Acad Sci U S A. 2001;  98 7093-7100
  • 54 McCollum A T, Nasr P, Estus S. Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death.  J Neurochem. 2002;  82 1208-1220

Candice BrownPh.D. 

Box 356460, Department of Obstetrics and Gynecology

University of Washington, Seattle, WA 98195

Email: canbrown@u.washington.edu

    >