Synthesis 2023; 55(03): 510-518
DOI: 10.1055/a-1938-2443
paper

Nucleophilic Selenocyanation from Selenium Dioxide and Malononitrile

,
Patrice Vanelle
The Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université are warmly acknowledged for financial support.


Abstract

The first nucleophilic selenocyanation from selenium dioxide and malononitrile is described. This methodology produced a wide variety of selenocyanates from halides in moderate to excellent yields under mild conditions, highlighting the versatility and usefulness of this new source of nucleophilic selenocyanation.

Supporting Information



Publication History

Received: 28 July 2022

Accepted: 07 September 2022

Accepted Manuscript online:
07 September 2022

Article published online:
10 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chuai H, Zhang S.-Q, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Eur. J. Med. Chem. 2021; 223: 113621
    • 2a Facompre ND, El-Bayoumy K, Sun Y.-W, Pinto JT, Sinha R. Cancer Prev. Res. 2010; 3: 975
    • 2b Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. J. Med. Chem. 2016; 59: 1946
    • 2c Banerjee K, Padmavathi G, Bhattacherjee D, Saha S, Kunnumakkara AB, Bhabak KP. Org. Biomol. Chem. 2018; 16: 8769
  • 3 Desai D, Kaushal N, Gandhi UH, Arner RJ, D’Souza C, Chen G, Vunta H, El-Bayoumy K, Amin S, Sandeep Prabhu K. Chem. Biol. Interact. 2010; 188: 446
  • 4 Alcolea V, Moreno E, Etxebeste-Mitxeltorena M, Navarro-Blasco I, González-Peñas E, Jiménez-Ruiz A, Irache JM, Sanmartín C, Espuelas S. Acta Tropica 2021; 215: 105801
  • 5 Chao MN, Lorenzo-Ocampo MV, Szajnman SH, Docampo R, Rodriguez JB. Bioorg. Med. Chem. 2019; 27: 1350
  • 6 SCN/SeCN comparison: Ghosh P, Chhetri G, Nandi AK, Sarkar S, Saha T, Das S. New J. Chem. 2019; 43: 10959
    • 7a Karmaker PG, Huo F. Asian J. Org. Chem. 2022; 11: e20220022
    • 7b Guan Y, Townsend SD. Org. Lett. 2017; 19: 5252
    • 7c Kalaramna P, Goswami A. J. Org. Chem. 2021; 86: 9317
  • 8 Tao S, Xu L, Yang K, Zhang J, Du Y. Org. Lett. 2022; 24: 4187
    • 9a Maity P, Kundu D, Roy R, Ranu BC. Org. Lett. 2014; 16: 4122
    • 9b Maity P, Paroi B, Ranu BC. Org. Lett. 2017; 19: 5748
    • 9c Maity P, Ranu BC. Adv. Synth. Catal. 2017; 359: 4369
  • 10 Thanna S, Goins CM, Knudson SE, Slayden RA, Ronning DR, Sucheck S. J. Org. Chem. 2017; 82: 3844
  • 11 Kalaramna P, Goswami A. Eur. J. Org. Chem. 2021; 5359
    • 12a For review, see: Gao M, Vuagnat M, Chen M.-Y, Pannecoucke X, Jubault P, Besset T. Chem. Eur. J. 2021; 27: 6145
    • 12b Wu D, Qiu J, Li C, Yuan L, Yuan L, Yuan L, Yin H, Chen F.-X. J. Org. Chem. 2020; 85: 934
    • 12c Xiao J.-A, Li Y.-C, Cheng X.-L, Chen W.-Q, Cui J.-G, Huang Y.-M, Huang J, Xiao Q, Su W, Yang H. Org. Chem. Front. 2019; 6: 1967
    • 12d Xiao J.-A, Cheng X.-L, Meng R.-F, Qin X.-S, Peng H, Ren J.-W, Xie Z.-Z, Cui J.-G, Huang Y.-M. Synthesis 2021; 53: 954
    • 12e Deng Z, Ai-Hui Y, Zhi-Min C. Synthesis 2021; 53: 3744
    • 13a Sun K, Lv Y, Chen Y, Zhou T, Xing Y, Wang X. Org. Biomol. Chem. 2017; 15: 4464
    • 13b Sorabad GS, Maddani MR. New J. Chem. 2020; 44: 2222
    • 13c Cui J, Wei M, Pang L, Xiao J, Gan C, Guo J, Xie C, Zhu Q, Huang Y. Tetrahedron 2020; 76: 130978
    • 14a Kachanov AV, Slabko OY, Baranova OV, Shilova EV, Kaminskii VA. Tetrahedron Lett. 2004; 45: 4461
    • 14b Marpna ID, Wanniang K, Lipon TM, Shangpliang OR, Myrboh B. J. Org. Chem. 2021; 86: 1980
    • 14c Redon S, Obah Kosso AR, Broggi J, Vanelle P. Tetrahedron Lett. 2017; 58: 2771
    • 14d Redon S, Obah Kosso AR, Broggi J, Vanelle P. Synthesis 2019; 51: 3758
    • 14e Obah Kosso AR, Broggi J, Redon S, Vanelle P. Synlett 2018; 29: 1215
    • 14f Rai V, Sorabad GS, Maddani MR. ChemistrySelect 2021; 6: 6468
  • 15 Li J.-C, Gao W.-X, Liu M.-C, Zhou Y.-B, Wu H.-Y. J. Org. Chem. 2021; 86: 17294
  • 16 Baquedano Y, Alcolea V, Toro MA, Gutierrez KJ, Nguewa P, Font M, Moreno E, Espuelas S, Jimenez-Ruiz A, Palop JA, Plano D, Sanmartín C. Agents Chemother. 2016; 60: 3802
  • 17 Lu L.-G, Bi K, Huang X.-B, Liu M.-C, Zhou Y.-B, Wu H.-Y. Adv. Synth. Catal. 2021; 363: 1346
  • 18 De-Zordo Banliat A, Grollier K, Damond A, Billard T, Dagousset G, Magnier E, Pégot B. Tetrahedron 2021; 101: 132507
  • 19 Jacob LA, Matos B, Mostafa C, Rodriguez J, Kivela Tillotson JA. Molecules 2004; 9: 622
  • 20 Nasim MJ, Witek K, Kincses A, Abdin AY, Zesławska E, Marc MA, Gajdacs M, Spengler G, Nitek W, Latacz G, Karczewska E, Kiec-Kononowicz K, Handzlik J, Jacob C. New J. Chem. 2019; 43: 6021
  • 21 Iwaoka M, Katsuda T, Komatsu H, Tomoda S. J. Org. Chem. 2005; 70: 321
  • 22 Meinke PT, Krafft GA. J. Am. Chem. Soc. 1988; 110: 8671
  • 23 Plano D, Baquedano Y, Moreno-Mateo D, Font M, Jiménez-Ruiz A, Palop JA, Sanmartín C. Eur. J. Med. Chem. 2011; 46: 3315
  • 24 Meinke PT, Krafft GA, Guram A. J. Org. Chem. 1988; 53: 3632
  • 25 Chao MN, Szajnman SH, Cattaneo M, Sanchez Gonzalez J, Bonesic SM, Rodriguez JB. Synthesis 2020; 52: 1643
  • 26 Wu D, Li C, Duan Y, Yina H, Chen F.-X. Org. Chem. Front. 2021; 8: 3724
  • 27 Yu F, Li C, Wang C, Zhang H, Cao Z.-Y. Org. Lett. 2021; 23: 7156