CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2020; 80(08): 851-862
DOI: 10.1055/a-1056-3148
GebFra Science
Original Article

Tacrolimus Improves the Implantation Rate in Patients with Elevated Th1/2 Helper Cell Ratio and Repeated Implantation Failure (RIF)

Tacrolimus verbessert die Implantationsrate bei Patientinnen mit einem erhöhten Verhältnis von T-Helferzellen des Typs 1 zum Typ 2 und wiederholtem Implantationsversagen
Zahra Bahrami-Asl
1   Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2   Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
,
Laya Farzadi
3   Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
4   Womenʼs Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
,
Amir Fattahi
3   Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
4   Womenʼs Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
,
Mehdi Yousefi
5   Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Alicia Quinonero
2   Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
,
Parvin Hakimi
4   Womenʼs Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
,
Zeinab Latifi
6   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Hamid Reza Nejabati
6   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Tohid Ghasemnejad
7   Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Aydin Raei Sadigh
6   Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Mohammad Hassan Heidari
1   Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
,
Mohammad Nouri
3   Department of Reproductive Biology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
8   Institute for Stem Cell and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
,
Marefat Ghaffari Novin
1   Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
,
Francisco Dominguez
2   Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
› Author Affiliations

Abstract

Introduction An abnormal endometrial immune response is involved in the pathogenesis of repeated implantation failure (RIF), so we investigated the effectiveness of tacrolimus treatment on the endometrium of RIF patients.

Materials and Methods Ten RIF patients with elevated T-helper 1/T-helper 2 (Th1/Th2) cell ratios were recruited into a clinical study. The expression of p53, leukemia inhibitory factor (LIF), interleukin (IL)-4, IL-10, IL-17, and interferon gamma (IFN-γ) in the endometrium of patients with and without tacrolimus treatment and the association of these factors with assisted reproductive technology (ART) outcomes were investigated.

Results Tacrolimus significantly increased the expression of LIF, IL-10, and IL-17 and decreased the expression of IL-4, IFN-γ, and the IFN-γ/IL-10 ratio in RIF patients. Tacrolimus treatment resulted in an implantation rate of 40%, a clinical pregnancy rate of 50%, and a live birth rate of 35% in RIF patients with elevated Th1/Th2 ratios who had previously failed to become pregnant despite at least three transfers of embryos. We also found a significant positive correlation between IL-10 levels and the implantation rate.

Conclusions Our findings suggest that RIF patients with a higher Th1/Th2 ratio could be candidates for tacrolimus therapy and that this immunosuppressive drug could be acting through upregulation of LIF, IL-10, and IL-17.

Zusammenfassung

Einleitung Da eine abnorme Immunantwort des Endometriums möglicherweise an der Pathogenese von wiederholtem Implantationsversagen (RIF) beteiligt ist, haben wir die Auswirkungen einer Tacrolimus-Behandlung auf das Endometrium von Patientinnen mit RIF untersucht.

Material und Methoden Eine klinische Studie wurde bei 10 RIF-Patientinnen mit einem erhöhten Verhältnis der T-Helferzellen des Typs 1 zum Typ 2 (Th1/Th2) durchgeführt. Alle in der Studie aufgenommenen Frauen hatten mindestens 3 erfolglose Implantationsversuche hinter sich. Die Exprimierung von p53, leukämiehemmendem Faktor (LIF), Interleukin (IL)-4, IL-10, IL-17 und Interferon gamma (IFN-γ) in der Gebärmutterschleimhaut dieser Patientinnen vor und nach der Behandlung mit Tacrolimus und der Zusammenhang zwischen diesen Faktoren und dem Outcome nach assistierten Reproduktionstechnologien (ART) wurden geprüft.

Ergebnisse Die Behandlung mit Tacrolimus führte zu einer signifikanten Steigerung der Exprimierung von LIF, IL-10 und IL-17, verringerte die Exprimierung von IL-4 und IFN-γ und senkte das Verhältnis von IFN-γ zu IL-10 bei Patientinnen mit RIF. Die Tacrolimus-Behandlung führte zu einer Implantationsrate von 40%, einer 50%igen klinischen Schwangerschaftsrate und einer Lebendgeburtentrate von 35% bei Patientinnen mit RIF und einem erhöhten Th1/Th2-Verhältnis. Es gab auch eine signifikante positive Korrelation zwischen den IL-10-Konzentrationen und der Implantationsrate.

Schlussfolgerungen Unsere Ergebnisse lassen darauf schließen, dass RIF-Patientinnen mit einem erhöhten Th1/Th2-Verhältnis geeignete Kandidaten für eine Behandlung mit Tacrolimus sein könnten und dass dieses Immunsuppressivum möglicherweise durch eine Hochregulierung von LIF, IL-10 und IL-17 seine Wirkung entfaltet.



Publication History

Received: 19 September 2019

Accepted after revision: 09 November 2019

Article published online:
14 August 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Somigliana E, Vigano P, Busnelli A. et al. Repeated implantation failure at the crossroad between statistics, clinics and over-diagnosis. Reprod Biomed Online 2018; 36: 32-38
  • 2 Lédée N, Petitbarat M, Chevrier L. et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol 2016; 75: 388-401
  • 3 Coughlan C, Ledger W, Wang Q. et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28: 14-38
  • 4 Nakagawa K, Kwak-Kim J, Ota K. et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am J Reprod Immunol 2015; 73: 353-361
  • 5 Hajipour H, Nejabati HR, Latifi Z. et al. Lymphocytes immunotherapy for preserving pregnancy: Mechanisms and Challenges. Am J Reprod Immunol 2018; 80: e12853
  • 6 Piccinni MP, Lombardelli L, Logiodice F. et al. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy. Clin Mol Allergy 2015; 13: 9
  • 7 Feyaerts D, Benner M, Van Cranenbroek B. et al. Human uterine lymphocytes acquire a more experienced and tolerogenic phenotype during pregnancy. Sci Rep 2017; 7: 2884
  • 8 Nakagawa K, Kwak-Kim J, Kuroda K. et al. Immunosuppressive treatment using tacrolimus promotes pregnancy outcome in infertile women with repeated implantation failures. Am J Reprod Immunol 2017; 78: e12682
  • 9 Mekinian A, Cohen J, Alijotas-Reig J. et al. Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation?. Am J Reprod Immunol 2016; 76: 8-28
  • 10 Wilczyński JR. Th1/Th2 cytokines balance–yin and yang of reproductive immunology. Eur J Obstet Gynecol Reprod Biol 2005; 122: 136-143
  • 11 Rosario GX, Stewart CL. The multifaceted actions of leukaemia inhibitory factor in mediating uterine receptivity and embryo implantation. Am J Reprod Immunol 2016; 75: 246-255
  • 12 Hu W, Feng Z, Atwal GS. et al. p 53: a new player in reproduction. Cell Cycle 2008; 7: 848-852
  • 13 Levine AJ, Tomasini R, McKeon FD. et al. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011; 12: 259-265
  • 14 Riley JK. Trophoblast immune receptors in maternal-fetal tolerance. Immunol Invest 2008; 37: 395-426
  • 15 Afzali B, Lombardi G, Lechler R. et al. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007; 148: 32-46
  • 16 Heidt S, San Segundo D, Wood KJ. The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr Opin Organ Transplant 2010; 15: 456
  • 17 Hanna J, Goldman-Wohl D, Hamani Y. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065-1074
  • 18 Eriksson M, Meadows SK, Wira CR. et al. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol 2004; 76: 667-675
  • 19 Ledee N, Petitbarat M, Chevrier L. et al. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am J Reprod Immunol 2016; 75: 388-401
  • 20 Yago T, Nanke Y, Kawamoto M. et al. Tacrolimus potently inhibits human osteoclastogenesis induced by IL-17 from human monocytes alone and suppresses human Th17 differentiation. Cytokine 2012; 59: 252-257
  • 21 Kino T, Hatanaka H, Miyata S. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 1987; 40: 1256-1265
  • 22 Gupta A, Adamiak A, Chow M. Tacrolimus: a review of its use for the management of dermatoses. J Eur Acad Dermatol Venereol 2002; 16: 100-114
  • 23 Albaghdadi AJ, Kan FW. Immunosuppression with tacrolimus improved implantation and rescued expression of uterine progesterone receptor and its co-regulators FKBP52 and PIASy at nidation in the obese and diabetic mice: Comparative studies with metformin. Mol Cell Endocrinol 2018; 460: 73-84
  • 24 Michel G, Auer H, Kemény L. et al. Antioncogene P53 and mitogenic cytokine interleukin-8 aberrantly expressed in psoriatic skin are inversely regulated by the antipsoriatic drug tacrolimus (FK506). Biochem Pharmacol 1996; 51: 1315-1320
  • 25 Gambichler T, Schlaffke A, Tomi NS. et al. Tacrolimus ointment neither blocks ultraviolet B nor affects expression of thymine dimers and p 53 in human skin. J Dermatol Sci 2008; 50: 115-122
  • 26 Furukawa Y, Yoshikawa H, Iwasa K. et al. Clinical efficacy and cytokine network-modulating effects of tacrolimus in myasthenia gravis. J Neuroimmunol 2008; 195: 108-115
  • 27 Paiva P, Menkhorst E, Salamonsen L. et al. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev 2009; 20: 319-328
  • 28 Zollner U, Bischofs S, Lalic I. et al. LIF and TNF alpha concentrations in embryo culture media are predictive for embryo implantation in IVF. Asian Pacific Journal of Reproduction 2012; 1: 277-282
  • 29 Kojima K, Kanzaki H, Iwai M. et al. Expression of leukaemia inhibitory factor (LIF) receptor in human placenta: a possible role for LIF in the growth and differentiation of trophoblasts. Hum Reprod 1995; 10: 1907-1911
  • 30 Sawai K, Matsuzaki N, Kameda T. et al. Leukemia inhibitory factor produced at the fetomaternal interface stimulates chorionic gonadotropin production: its possible implication during pregnancy, including implantation period. J Clin Endocrinol Metab 1995; 80: 1449-1456
  • 31 Aghajanova L, Stavreus-Evers A, Nikas Y. et al. Coexpression of pinopodes and leukemia inhibitory factor, as well as its receptor, in human endometrium. Fertil Steril 2003; 79: 808-814
  • 32 Sharkey A, King A, Clark D. et al. Localization of leukemia inhibitory factor and its receptor in human placenta throughout pregnancy. Biol Reprod 1999; 60: 355-364
  • 33 Shuya LL, Menkhorst EM, Yap J. et al. Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice. PLoS One 2011; 6: e25288
  • 34 Seshagiri PB, Roy SS, Sireesha G. et al. Cellular and molecular regulation of mammalian blastocyst hatching. J Reprod Immunol 2009; 83: 79-84
  • 35 Rao RP, Fischer B, Seshagiri PB. Embryo-endometrial expression of leukemia inhibitory factor in the golden hamster (Mesocricetus auratus): increased expression during proestrous and window of implantation stages. Reprod Fertil Dev 2008; 20: 440-449
  • 36 Bamberger AM, Jenatschke S, Schulte HM. et al. Leukemia inhibitory factor (LIF) stimulates the human HLA-G promoter in JEG3 choriocarcinoma cells. J Clin Endocrinol Metab 2000; 85: 3932-3936
  • 37 Roussev RG, Coulam CB. HLA-G and its role in implantation. J Assist Reprod Genet 2007; 24: 288-295
  • 38 Fuzzi B, Rizzo R, Criscuoli L. et al. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 2002; 32: 311-315
  • 39 Licht P, Fluhr H, Neuwinger J. et al. Is human chorionic gonadotropin directly involved in the regulation of human implantation?. Mol Cell Endocrinol 2007; 269: 85-92
  • 40 Laird SM, Tuckerman EM, Dalton CF. et al. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod 1997; 12: 569-574
  • 41 Kwak-Kim J, Chung-Bang H, Ng S. et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod 2003; 18: 767-773
  • 42 Blanco O, Tirado I, Muñoz-Fernández R. et al. Human decidual stromal cells express HLA-G: Effects of cytokines and decidualization. Hum Reprod 2008; 23: 144-152
  • 43 Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol 2001; 2: 816
  • 44 Piccinni M-P, Beloni L, Livi C. et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 1998; 4: 1020
  • 45 Fiorentino DF, Bond MW, Mosmann T. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081-2095
  • 46 Criscuoli L, Rizzo R, Fuzzi B. et al. Lack of histocompatibility leukocyte antigen-G expression in early embryos is not related to germinal defects or impairment of interleukin-10 production by embryos. Gynecol Endocrinol 2005; 20: 264-269
  • 47 Caproni M, Torchia D, Antiga E. et al. The effects of tacrolimus ointment on regulatory T lymphocytes in atopic dermatitis. J Clin Immunol 2006; 26: 370-375
  • 48 Cho ML, Kim WU, Min SY. et al. Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor α production by rheumatoid synoviocytes. Arthritis Rheum 2002; 46: 42-51
  • 49 Kim W, Cho M, Kim S. et al. Divergent effect of cyclosporine on Th1/Th2 type cytokines in patients with severe, refractory rheumatoid arthritis. J Rheumatol 2000; 27: 324-331
  • 50 Santner-Nanan B, Peek MJ, Khanam R. et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 2009; 183: 7023-7030
  • 51 Pongcharoen S, Somran J, Sritippayawan S. et al. Interleukin-17 expression in the human placenta. Placenta 2007; 28: 59-63
  • 52 Pongcharoen S, Supalap K. Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2009; 61: 261-264
  • 53 Abadja F, Atemkeng S, Alamartine E. et al. Impact of mycophenolic acid and tacrolimus on Th17-related immune response. Transplantation 2011; 92: 396-403
  • 54 Cho ML, Ju JH, Kim KW. et al. Cyclosporine A inhibits IL-15-induced IL-17 production in CD4+ T cells via down-regulation of PI3K/Akt and NF-kB. Immunol Lett 2007; 108: 88-96
  • 55 Zhang C, Zhang J, Yang B. et al. Cyclosporin A inhibits the production of IL-17 by memory Th17 cells from healthy individuals and patients with rheumatoid arthritis. Cytokine 2008; 42: 345-352
  • 56 Grimes PE, Soriano T, Dytoc MT. Topical tacrolimus for repigmentation of vitiligo. J Am Acad Dermatol 2002; 47: 789-791
  • 57 Grimes PE, Morris R, Avaniss-Aghajani E. et al. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol 2004; 51: 52-61
  • 58 Croy BA, Esadeg S, Chantakru S. et al. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 2003; 59: 175-191
  • 59 Goldman-Wohl DS, Ariel I, Greenfield C. et al. Tie-2 and angiopoietin-2 expression at the fetal-maternal interface: a receptor ligand model for vascular remodelling. Mol Hum Reprod 2000; 6: 81-87
  • 60 Tamura F, Masuhara A, Sakaida I. et al. FK506 promotes liver regeneration by suppressing natural killer cell activity. J Gastroenterol Hepatol 1998; 13: 703-708
  • 61 Morteau O, Blundell S, Chakera A. et al. Renal transplant immunosuppression impairs natural killer cell function in vitro and in vivo. PLoS One 2010; 5: e13294