Semin Reprod Med 2007; 25(4): 272-286
DOI: 10.1055/s-2007-980221
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Genetics of Hypogonadotropic Hypogonadism

Balasubramanian Bhagavath1 , Lawrence C. Layman2
  • 1Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
  • 2Section of Reproductive Endocrinology, Infertility, & Genetics Department of Obstetrics & Gynecology, Reproductive Medicine Program, Developmental Neurobiology Program, The Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia
Further Information

Publication History

Publication Date:
26 June 2007 (online)

ABSTRACT

An up-to-date review of the genetic aspects of idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS) is presented. Because proper development of the neuroendocrine axis must occur for normal puberty and reproductive function, gonadotropin-releasing hormone (GnRH) neuron migration is outlined first, followed by an introduction to the in vitro analysis of GnRH neuron migration. The normal hypothalamic-pituitary-gonadal (HPG) axis at different ages is discussed, along with a brief overview of normal and delayed puberty in both boys and girls. The phenotype of IHH/KS is discussed in detail, with its relation to Mendelian inheritance and chromosomal translocations. The molecular basis of IHH/KS is reviewed, with particular emphasis on the three most common genes (KAL1, FGFR1, and GNRHR) that possess mutations in these patients. However, all other known genes for which mutations occur are also addressed briefly. The goal of this review is to provide a comprehensive discussion of IHH/KS, and to include both basic science and clinical findings that should allow a more complete understanding of hypothalamic-pituitary neuroendocrinology that is important in puberty and reproduction.

REFERENCES

  • 1 Wierman M E, Pawlowski J E, Allen M P, Xu M, Linseman D A, Nielsen-Preiss S. Molecular mechanisms of gonadotropin-releasing hormone neuronal migration.  Trends Endocrinol Metab. 2004;  15(3) 96-102
  • 2 Mellon P L, Windle J J, Goldsmith P C, Padula C A, Roberts J L, Weiner R I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis.  Neuron. 1990;  5(1) 1-10
  • 3 Radovick S, Wray S, Lee E et al.. Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice.  Proc Natl Acad Sci USA. 1991;  88(8) 3402-3406
  • 4 Grumbach M M. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant.  J Clin Endocrinol Metab. 2005;  90(5) 3122-3127
  • 5 Layman L C, Reindollar R H. The diagnosis and treatment of pubertal disorders.  Adolesc Med. 1994;  5 37-55
  • 6 Reindollar R H, Byrd J R, McDonough P G. Delayed sexual development: study of 252 patients.  Am J Obstet Gynecol. 1981;  140 371-380
  • 7 Crowley Jr W F, Filicori M, Spratt D I, Santoro N F. The physiology of gonadotropin-releasing hormone (GnRH) secretion in men and women.  Recent Prog Horm Res. 1985;  41 473-531
  • 8 Burris A S, Rodbard H W, Winters S J, Sherins R J. Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism: the response to human chorionic gonadotropin is predicted by initial testicular size.  J Clin Endocrinol Metab. 1988;  66 1144-1151
  • 9 Waldstreicher J, Seminara S B, Jameson J L et al.. The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human.  J Clin Endocrinol Metab. 1996;  81(12) 4388-4395
  • 10 Quinton R, Duke V M, Robertson A et al.. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization.  Clin Endocrinol (Oxf). 2001;  55(2) 163-174
  • 11 Bhagavath B, Podolsky R H, Ozata M et al.. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism.  Fertil Steril. 2006;  85(3) 706-713
  • 12 Franco B, Guioli S, Pragliola A et al.. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules.  Nature. 1991;  353 529-536
  • 13 Legouis R, Hardelin J, Levilliers J et al.. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules.  Cell. 1991;  67 423-435
  • 14 Bick D, Franco B, Sherins R S et al.. Intragenic deletion of the KALIG-1 gene in Kallmann's syndrome.  N Engl J Med. 1992;  326 1752-1755
  • 15 Hardelin J P, Levilliers J, Blanchard S et al.. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome.  Hum Mol Genet. 1993;  2(4) 373-377
  • 16 MacColl G, Quinton R, Bouloux P M. GnRH neuronal development: insights into hypogonadotrophic hypogonadism.  Trends Endocrinol Metab. 2002;  13(3) 112-118
  • 17 Lutz B, Karatani S, Rugarli E I et al.. Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated chick embryo.  Hum Mol Genet. 1994;  3(10) 1717-1723
  • 18 Soussi-Yanicostas N, de Castro F, Julliard A K, Perfettini I, Chedotal A, Petit C. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons.  Cell. 2002;  109(2) 217-228
  • 19 MacColl G, Bouloux P, Quinton R. Kallmann syndrome: adhesion, afferents, and anosmia.  Neuron. 2002;  34(5) 675-678
  • 20 Schwanzel-Fukuda M, Crossin K L, Pfaff D W, Bouloux P M, Hardelin J P, Petit C. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos.  J Comp Neurol. 1996;  366(3) 547-557
  • 21 Cariboni A, Pimpinelli F, Colamarino S et al.. The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons.  Hum Mol Genet. 2004;  13(22) 2781-2791
  • 22 Whitlock K E, Illing N, Brideau N J, Smith K M, Twomey S. Development of GnRH cells: Setting the stage for puberty.  Mol Cell Endocrinol. 2006;  254 39-50
  • 23 Loidi L, Castro-Feijoo L, Barreiro J et al.. Kallmann's syndrome with a novel missense mutation in the KAL1 gene that modifies the major cell adhesion site of the anosmin-1 protein.  J Pediatr Endocrinol Metab. 2005;  18(6) 545-548
  • 24 Albuisson J, Pecheux C, Carel J C et al.. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2).  Hum Mutat. 2005;  25(1) 98-99
  • 25 Sato N, Katsumata N, Kagami M et al.. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients.  J Clin Endocrinol Metab. 2004;  89(3) 1079-1088
  • 26 Massin N, Pecheux C, Eloit C et al.. X chromosome-linked Kallmann syndrome: clinical heterogeneity in three siblings carrying an intragenic deletion of the KAL-1 gene.  J Clin Endocrinol Metab. 2003;  88(5) 2003-2008
  • 27 Beranova M, Oliveira L M, Bedecarrats G Y et al.. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 2001;  86(4) 1580-1588
  • 28 Izumi Y, Tatsumi K, Okamoto S et al.. Analysis of the KAL1 gene in 19 Japanese patients with Kallmann syndrome.  Endocr J. 2001;  48(2) 143-149
  • 29 Jansen C, Hendriks-Stegeman B I, Jansen M. A novel nonsense mutation of the KAL gene in two brothers with Kallmann syndrome.  Horm Res. 2000;  53(4) 207-212
  • 30 Matsuo T, Okamoto S, Izumi Y et al.. A novel mutation of the KAL1 gene in monozygotic twins with Kallmann syndrome.  Eur J Endocrinol. 2000;  143(6) 783-787
  • 31 Hou J W, Tsai W Y, Wang T R. Detection of KAL-1 gene deletion with fluorescence in situ hybridization.  J Formos Med Assoc. 1999;  98(6) 448-451
  • 32 Izumi Y, Tatsumi K, Okamoto S et al.. A novel mutation of the KAL1 gene in Kallmann syndrome.  Endocr J. 1999;  46(5) 651-658
  • 33 O'Neill M J, Tridjaja B, Smith M J, Bell K M, Warne G L, Sinclair A H. Familial Kallmann syndrome: a novel splice acceptor mutation in the KAL gene.  Hum Mutat. 1998;  11(4) 340-342
  • 34 Gu W X, Colquhoun-Kerr J S, Kopp P, Bode H H, Jameson J L. A novel aminoterminal mutation in the KAL-1 gene in a large pedigree with X-linked Kallmann syndrome.  Mol Genet Metab. 1998;  65(1) 59-61
  • 35 Georgopoulos N A, Pralong F P, Seidman C E, Seidman J G, Crowley Jr W F, Vallejo M. Genetic heterogeneity evidenced by low incidence of KAL-1 gene mutations in sporadic cases of gonadotropin-releasing hormone deficiency.  J Clin Endocrinol Metab. 1997;  82(1) 213-217
  • 36 Hardelin J P, Petit C. A molecular approach to the pathophysiology of the X chromosome-linked Kallmann's syndrome.  Baillieres Clin Endocrinol Metab. 1995;  9(3) 489-507
  • 37 Parenti G, Rizzolo M G, Ghezzi M et al.. Variable penetrance of hypogonadism in a sibship with Kallmann syndrome due to a deletion of the KAL gene.  Am J Med Genet. 1995;  57(3) 476-478
  • 38 Hardelin J P, Levilliers J, Young J et al.. Xp22.3 deletions in isolated familial Kallmann's syndrome.  J Clin Endocrinol Metab. 1993;  76(4) 827-831
  • 39 Hardelin J P, Levilliers J, del Castillo I et al.. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene.  Proc Natl Acad Sci USA. 1992;  89(17) 8190-8194
  • 40 Bhagavath B, Xu N, Ozata M et al.. KAL1 mutations are not a common cause of idiopathic hypogonadotropic hypogonadism in humans.  Mol Hum Reprod. 2007;  13 165-170
  • 41 Dode C, Levilliers J, Dupont J M et al.. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.  Nat Genet. 2003;  33(4) 463-465
  • 42 Pitteloud N, Acierno Jr J S, Meysing A U, Dwyer A A, Hayes F J, Crowley Jr W F. Reversible Kallmann syndrome, delayed puberty, and isolated anosmia occurring in a single family with a mutation in the fibroblast growth factor receptor 1 gene.  J Clin Endocrinol Metab. 2005;  90(3) 1317-1322
  • 43 Sato N, Hasegawa T, Hori N, Fukami M, Yoshimura Y, Ogata T. Gonadotrophin therapy in Kallmann syndrome caused by heterozygous mutations of the gene for fibroblast growth factor receptor 1: report of three families: case report.  Hum Reprod. 2005;  20(8) 2173-2178
  • 44 Sato N, Ohyama K, Fukami M, Okada M, Ogata T. Kallmann syndrome: somatic and germline mutations of the fibroblast growth factor receptor 1 gene in a mother and the son.  J Clin Endocrinol Metab. 2006;  91(4) 1415-1418
  • 45 Pitteloud N, Acierno Jr J S, Meysing A et al.. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism.  Proc Natl Acad Sci USA. 2006;  103(16) 6281-6286
  • 46 Pitteloud N, Meysing A, Quinton R et al.. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes.  Mol Cell Endocrinol. 2006;  254-255 60-69
  • 47 Gill J C, Moenter S M, Tsai P S. Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling.  Endocrinology. 2004;  145(8) 3830-3839
  • 48 Tsai P S, Moenter S M, Postigo H R et al.. Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population.  Mol Endocrinol. 2005;  19(1) 225-236
  • 49 White K E, Cabral J M, Davis S I et al.. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation.  Am J Hum Genet. 2005;  76(2) 361-367
  • 50 Hurley M E, White M J, Green A J, Kelleher J. Antley-Bixler syndrome with radioulnar synostosis.  Pediatr Radiol. 2004;  34(2) 148-151
  • 51 Kress W, Petersen B, Collmann H, Grimm T. An unusual FGFR1 mutation (fibroblast growth factor receptor 1 mutation) in a girl with non-syndromic trigonocephaly.  Cytogenet Cell Genet. 2000;  91(1-4) 138-140
  • 52 Muenke M, Schell U, Hehr A et al.. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.  Nat Genet. 1994;  8(3) 269-274
  • 53 Bhagavath B, Ozata M, Ozdemir I C et al.. The prevalence of gonadotropin-releasing hormone receptor mutations in a large cohort of patients with hypogonadotropic hypogonadism.  Fertil Steril. 2005;  84(4) 951-957
  • 54 Layman L C, Cohen D P, Jin M et al.. Mutations in the gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism.  Nat Genet. 1998;  18(1) 14-15
  • 55 de Roux N, Young J, Misrahi M et al.. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor.  N Engl J Med. 1997;  337(22) 1597-1602
  • 56 de Roux N, Young J, Brailly-Tabard S, Misrahi M, Milgrom E, Chaison G. The same molecular defects of the gonadotropin-releasing hormone determine a variable degree of hypogonadism in affected kindred.  J Clin Endocrinol Metab. 1999;  84(2) 567-572
  • 57 Pralong F P, Gomez F, Castillo E et al.. Complete hypogonadotropic hypogonadism associated with a novel inactivating mutation of the gonadotropin-releasing hormone receptor.  J Clin Endocrinol Metab. 1999;  84(10) 3811-3816
  • 58 Kottler M L, Chauvin S, Lahlou N et al.. A new compound heterozygous mutation of the gonadotropin-releasing hormone receptor (L314X, Q106R) in a woman with complete hypogonadotropic hypogonadism: chronic estrogen administration amplifies the gonadotropin defect.  J Clin Endocrinol Metab. 2000;  85(9) 3002-3008
  • 59 Seminara S B, Beranova M, Oliveira L M, Martin K A, Crowley Jr W F, Hall J E. Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction and pregnancy in a patient with GnRH receptor mutations.  J Clin Endocrinol Metab. 2000;  85(2) 556-562
  • 60 Layman L C, McDonough P G, Cohen D P, Maddox M, Tho S P, Reindollar R H. Familial gonadotropin-releasing hormone resistance and hypogonadotropic hypogonadism in a family with multiple affected individuals.  Fertil Steril. 2001;  75(6) 1148-1155
  • 61 Costa E M, Bedecarrats G Y, Mendonca B B, Arnhold I J, Kaiser U B, Latronico A C. Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction.  J Clin Endocrinol Metab. 2001;  86(6) 2680-2686
  • 62 Layman L C, Cohen D P, Xie J, Smith G D. Clinical phenotype and infertility treatment in a male with hypogonadotropic hypogonadism due to mutations Ala129Asp/Arg262Gln of the gonadotropin-releasing hormone receptor.  Fertil Steril. 2002;  78(6) 1317-1320
  • 63 Dewailly D, Boucher A, Decanter C, Lagarde J P, Counis R, Kottler M L. Spontaneous pregnancy in a patient who was homozygous for the Q106R mutation in the gonadotropin-releasing hormone receptor gene.  Fertil Steril. 2002;  77(6) 1288-1291
  • 64 Maya-Nunez G, Janovick J A, Ulloa-Aguirre A, Soderlund D, Conn P M, Mendez J P. Molecular basis of hypogonadotropic hypogonadism: restoration of mutant (E(90)K) GnRH receptor function by a deletion at a distant site.  J Clin Endocrinol Metab. 2002;  87(5) 2144-2149
  • 65 Silveira L F, Stewart P M, Thomas M, Clark D A, Bouloux P M, MacColl G S. Novel homozygous splice acceptor site GnRH receptor (GnRHR) mutation: human GnRHR “knockout.”  J Clin Endocrinol Metab. 2002;  87(6) 2973-2977
  • 66 Bedecarrats G Y, Linher K D, Janovick J A et al.. Four naturally occurring mutations in the human GnRH receptor affect ligand binding and receptor function.  Mol Cell Endocrinol. 2003;  205(1-2) 51-64
  • 67 Wolczynski S, Laudanski P, Jarzabek K, Mittre H, Lagarde J P, Kottler M L. A case of complete hypogonadotropic hypogonadism with a mutation in the gonadotropin-releasing hormone receptor gene.  Fertil Steril. 2003;  79(2) 442-444
  • 68 Bedecarrats G Y, Linher K D, Kaiser U B. Two common naturally occurring mutations in the human gonadotropin-releasing hormone (GnRH) receptor have differential effects on gonadotropin gene expression and on GnRH-mediated signal transduction.  J Clin Endocrinol Metab. 2003;  88(2) 834-843
  • 69 Karges B, Karges W, Mine M et al.. Mutation Ala(171)Thr stabilizes the gonadotropin-releasing hormone receptor in its inactive conformation, causing familial hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 2003;  88(4) 1873-1879
  • 70 Meysing A U, Kanasaki H, Bedecarrats G Y et al.. GNRHR mutations in a woman with idiopathic hypogonadotropic hypogonadism highlight the differential sensitivity of luteinizing hormone and follicle-stimulating hormone to gonadotropin-releasing hormone.  J Clin Endocrinol Metab. 2004;  89(7) 3189-3198
  • 71 Brothers S P, Cornea A, Janovick J A, Conn P M. Human loss-of-function gonadotropin-releasing hormone receptor mutants retain wild-type receptors in the endoplasmic reticulum: molecular basis of the dominant-negative effect.  Mol Endocrinol. 2004;  18(7) 1787-1797
  • 72 Lee J H, Miele M E, Hicks D J et al.. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene.  J Natl Cancer Inst. 1996;  88(23) 1731-1737
  • 73 Simonian S X, Spratt D P, Herbison A E. Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat.  J Comp Neurol. 1999;  411(2) 346-358
  • 74 Kotani M, Detheux M, Vandenbogaerde A et al.. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.  J Biol Chem. 2001;  276(37) 34631-34636
  • 75 Ohtaki T, Shintani Y, Honda S et al.. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.  Nature. 2001;  411(6837) 613-617
  • 76 Muir A I, Chamberlain L, Elshourbagy N A et al.. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1.  J Biol Chem. 2001;  276(31) 28969-28975
  • 77 Messager S, Chatzidaki E E, Ma D et al.. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.  Proc Natl Acad Sci USA. 2005;  102(5) 1761-1766
  • 78 Irwig M S, Fraley G S, Smith J T et al.. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat.  Neuroendocrinology. 2004;  80(4) 264-272
  • 79 Parhar I S, Ogawa S, Sakuma Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish.  Endocrinology. 2004;  145(8) 3613-3618
  • 80 Plant T M, Ramaswamy S, Dipietro M J. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges.  Endocrinology. 2006;  147(2) 1007-1013
  • 81 Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat.  Biochem Biophys Res Commun. 2004;  320(2) 383-388
  • 82 Dhillo W S, Chaudhri O B, Patterson M et al.. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males.  J Clin Endocrinol Metab. 2005;  90(12) 6609-6615
  • 83 Smith J T, Dungan H M, Stoll E A et al.. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse.  Endocrinology. 2005;  146(7) 2976-2984
  • 84 Smith J T, Cunningham M J, Rissman E F, Clifton D K, Steiner R A. Regulation of Kiss1 gene expression in the brain of the female mouse.  Endocrinology. 2005;  146(9) 3686-3692
  • 85 Seminara S B, Messager S, Chatzidaki E E et al.. The GPR54 gene as a regulator of puberty.  N Engl J Med. 2003;  349(17) 1614-1627
  • 86 de Roux N, Genin E, Carel J C, Matsuda F, Chaussain J L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.  Proc Natl Acad Sci USA. 2003;  100(19) 10972-10976
  • 87 Pallais J C, Bo-Abbas Y, Pitteloud N, Crowley Jr W F, Seminara S B. Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54.  Mol Cell Endocrinol. 2006;  254-255 70-77
  • 88 Licinio J, Mantzoros C, Negrao A B et al.. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function.  Nat Med. 1997;  3(5) 575-579
  • 89 Smith J T, Acohido B V, Clifton D K, Steiner R A. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse.  J Neuroendocrinol. 2006;  18(4) 298-303
  • 90 Welt C K, Chan J L, Bullen J et al.. Recombinant human leptin in women with hypothalamic amenorrhea.  N Engl J Med. 2004;  351(10) 987-997
  • 91 Vaisse C, Halaas J L, Horvath C M, Darnell Jr J E, Stoffel M, Friedman J M. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice.  Nat Genet. 1996;  14(1) 95-97
  • 92 Lubrano-Berthelier C, Le Stunff C, Bougneres P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans.  J Clin Endocrinol Metab. 2004;  89(5) 2028-2032
  • 93 Strobel A, Issad T, Camoin L, Ozata M, Strosberg A D. A leptin missense mutation associated with hypogonadism and morbid obesity.  Nat Genet. 1998;  18 213-215
  • 94 Montague C T, Farooqi S, Whitehead F P et al.. Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;  387 903-908
  • 95 Clement K, Vaisse C, Lahlou N et al.. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature. 1998;  392 398-401
  • 96 Licinio J, Caglayan S, Ozata M et al.. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults.  Proc Natl Acad Sci USA. 2004;  101(13) 4531-4536
  • 97 Ozata M, Ozdemir I C, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects.  J Clin Endocrinol Metab. 1999;  84(10) 3686-3695
  • 98 Muscatelli F, Strom T M, Walker A P et al.. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism.  Nature. 1994;  372 672-676
  • 99 Zanaria E, Muscatelli F, Bardoni B et al.. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita.  Nature. 1994;  372 635-641
  • 100 Guo W, Mason J S, Stone C G et al.. Diagnosis of X-linked adrenal hypoplasia congenita by mutation analysis of the DAX1 gene.  JAMA. 1995;  274(4) 324-330
  • 101 Zhang Y-H, Guo W, Wagner R L et al.. DAX1 mutations provide insight into structure-function relationships in steroidogenic tissue development.  Am J Hum Genet. 1998;  62 855-864
  • 102 Merke D P, Tajima T, Baron J, Cutler G B. Hypogonadotropic hypogonadism in a female caused by an X-linked recessive mutation in the DAX1 gene.  N Engl J Med. 1999;  340(16) 1248-1252
  • 103 Seminara S B, Achermann J C, Genel M, Jameson J L, Crowley Jr W F. X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females.  J Clin Endocrinol Metab. 1999;  84(12) 4501-4509
  • 104 Achermann J C, Gu W X, Kotlar T J et al.. Mutational analysis of DAX1 in patients with hypogonadotropic hypogonadism or pubertal delay.  J Clin Endocrinol Metab. 1999;  84(12) 4497-4500
  • 105 Mantovani G, Ozisik G, Achermann J C et al.. Hypogonadotropic hypogonadism as a presenting feature of late-onset x-linked adrenal hypoplasia congenita.  J Clin Endocrinol Metab. 2002;  87(1) 44-48
  • 106 Tabarin A, Achermann J C, Recan D et al.. A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism.  J Clin Invest. 2000;  105(3) 321-328
  • 107 Habiby R L, Boepple P, Nachtigall L, Sluss P M, Crowley Jr W F, Jameson J L. Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production.  J Clin Invest. 1996;  98 1055-1062
  • 108 Caron P, Imbeaud S, Bennet A, Plantavid M, Camerino G, Rochiccioli P. Combined hypothalamic-pituitary-gonadal defect in a hypogonadic man with a novel mutation in the DAX-1 gene.  J Clin Endocrinol Metab. 1999;  84(10) 3563-3569
  • 109 Achermann J C, Silverman B L, Habiby R L, Jameson J L. Presymptomatic diagnosis of X-linked adrenal hypoplasia congenita by analysis of DAX1.  J Pediatr. 2000;  137(6) 878-881
  • 110 Wiltshire E, Couper J, Rodda C, Jameson J L, Achermann J C. Variable presentation of X-linked adrenal hypoplasia congenita.  J Pediatr Endocrinol Metab. 2001;  14(8) 1093-1096
  • 111 Achermann J C, Ito M, Silverman B L et al.. Missense mutations cluster within the carboxyl-terminal region of DAX-1 and impair transcriptional repression.  J Clin Endocrinol Metab. 2001;  86(7) 3171-3175
  • 112 Salvi R, Gomez F, Fiaux M et al.. Progressive onset of adrenal insufficiency and hypogonadism of pituitary origin caused by a complex genetic rearrangement within DAX-1.  J Clin Endocrinol Metab. 2002;  87(9) 4094-4100
  • 113 Ozisik G, Mantovani G, Achermann J C et al.. An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita.  J Clin Endocrinol Metab. 2003;  88(1) 417-423
  • 114 Lin L, Gu W X, Ozisik G et al.. Analysis of DAX1 (NR0B1) and steroidogenic factor-1 (NR5A1) in children and adults with primary adrenal failure: ten years' experience.  J Clin Endocrinol Metab. 2006;  91(8) 3048-3054
  • 115 Achermann J C. The role of SF1/DAX1 in adrenal and reproductive function.  Ann Endocrinol (Paris). 2005;  66(3) 233-239
  • 116 Yu R N, Ito M, Saunders T L, Camper S A, Jameson J L. Role of Ahch in gonadal development and gametogenesis.  Nat Genet. 1998;  20 353-357
  • 117 Jackson R S, Creemers J W, Ohagi S et al.. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene.  Nat Genet. 1997;  16(3) 303-306
  • 118 O'Rahilly S, Gray H, Humphreys P J et al.. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function.  N Engl J Med. 1995;  333(21) 1386-1390
  • 119 Jackson R S, Creemers J W, Farooqi I S et al.. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency.  J Clin Invest. 2003;  112(10) 1550-1560
  • 120 Dattani M T, Martinez-Barbera J-P, Thomas P Q et al.. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse.  Nat Genet. 1998;  19 125-133
  • 121 Thomas P Q, Dattani M T, Brickman J M et al.. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia.  Hum Mol Genet. 2001;  10 39-45
  • 122 Brickman J M, Clements M, Tyrell R et al.. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders.  Development. 2001;  128(24) 5189-5199
  • 123 Thomas P Q, Dattani M T, Brickman J M et al.. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia.  Hum Mol Genet. 2001;  10(1) 39-45
  • 124 Quirk J, Brown P. Hesx1 homeodomain protein represses transcription as a monomer and antagonises transactivation of specific sites as a homodimer.  J Mol Endocrinol. 2002;  28(3) 193-205
  • 125 Kim S S, Kim Y, Shin Y L, Kim G H, Kim T U, Yoo H W. Clinical characteristics and molecular analysis of PIT1, PROP1, LHX3, and HESX1 in combined pituitary hormone deficiency patients with abnormal pituitary MR imaging.  Horm Res. 2003;  60(6) 277-283
  • 126 Carvalho L R, Woods K S, Mendonca B B et al.. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction.  J Clin Invest. 2003;  112(8) 1192-1201
  • 127 Cohen R N, Cohen L E, Botero D et al.. Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia.  J Clin Endocrinol Metab. 2003;  88(10) 4832-4839
  • 128 Reynaud R, Gueydan M, Saveanu A et al.. Genetic screening of combined pituitary hormone deficiency: experience in 195 patients.  J Clin Endocrinol Metab. 2006;  91(9) 3329-3336
  • 129 Fluck C, Deladoey J, Rutishauser K et al.. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg to Cys at codon 120 (R120C).  J Clin Endocrinol Metab. 1998;  83 3727-3734
  • 130 Cogan J D, Wu W, Phillips J AI et al.. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency.  J Clin Endocrinol Metab. 1998;  83 3346-3349
  • 131 Wu W, Cogan J D, Pfaffle R W et al.. Mutations in PROP1 cause familial combined pituitary hormone deficiency.  Nat Genet. 1998;  18 147-149
  • 132 Arroyo A, Pernasetti F, Vasilyev V V, Amato P, Yen S S, Mellon P L. A unique case of combined pituitary hormone deficiency caused by a PROP1 gene mutation (R120C) associated with normal height and absent puberty.  Clin Endocrinol (Oxf). 2002;  57(2) 283-291
  • 133 Park J K, Ozata M, Chorich L P et al.. Analysis of the PROP1 gene in a large cohort of patients with idiopathic hypogonadotropic hypogonadism.  Clin Endocrinol (Oxf). 2004;  60(1) 147-149
  • 134 Andersen B, Pearse II R V, Jenne K et al.. The Ames dwarf gene is required for Pit-1 gene activation.  Dev Biol. 1995;  172(2) 495-503
  • 135 Netchine I, Sobrier M L, Krude H et al.. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency.  Nat Genet. 2000;  25(2) 182-186
  • 136 Sloop K W, Parker G E, Hanna K R, Wright H A, Rhodes S J. LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes.  Gene. 2001;  265(1-2) 61-69
  • 137 Machinis K, Pantel J, Netchine I et al.. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4.  Am J Hum Genet. 2001;  69(5) 961-968
  • 138 Layman L C, Edwards J L, Osborne W E et al.. Human chorionic gonadotropin-b sequences in women with disorders of HCG production.  Mol Hum Reprod. 1997;  3(4) 315-320
  • 139 Weiss J, Adams E, Whitcomb R W, Crowley Jr W F, Jameson J L. Normal sequence of the gonadotropin-releasing hormone gene in patients with idiopathic hypgonadotropic hypogonadism.  Biol Reprod. 1991;  45 743-747
  • 140 Valdes-Socin H, Salvi R, Daly A F et al.. Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene.  N Engl J Med. 2004;  351(25) 2619-2625
  • 141 Layman L C, Lee E J, Peak D B et al.. Delayed puberty and hypogonadism caused by a mutation in the follicle stimulating hormone β-subunit gene.  N Engl J Med. 1997;  337 607-611
  • 142 Layman L C, Porto A L, Xie J et al.. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia.  J Clin Endocrinol Metab. 2002;  87(8) 3702-3707
  • 143 Matthews C H, Borgato S, Beck-Peccoz P et al.. Primary amenorrhea and infertility due to a mutation in the β-subunit of follicle-stimulating hormone.  Nat Genet. 1993;  5 83-86
  • 144 Clark A D, Layman L C. Analysis of the Cys82Arg mutation in follicle-stimulating hormone beta (FSHbeta) using a novel FSH expression vector.  Fertil Steril. 2003;  79(2) 379-385
  • 145 Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson P O, Chatterjee K. Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations.  Clin Chem Lab Med. 1998;  36(8) 663-665
  • 146 Phillip M, Arbelle J E, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the b-subunit of follicle stimulating hormone.  N Engl J Med. 1998;  338(24) 1729-1732
  • 147 Barnes R B, Namnoum A, Rosenfield R L, Layman L C. Effects of follicle-stimulating hormone on ovarian androgen production in a woman with isolated follicle-stimulating hormone deficiency.  N Engl J Med. 2000;  343(16) 1197-1198
  • 148 Barnes R B, Namnoum A, Rosenfield R L, Layman L C. The role of LH and FSH in ovarian androgen secretion and ovarian follicular development: clinical studies in a patient with isolated FSH deficiency and multicystic ovaries.  Hum Reprod. 2002;  17 88-91
  • 149 Pitteloud N, Boepple P A, DeCruz S, Valkenburgh S B, Crowley Jr W F, Hayes F J. The fertile eunuch variant of idiopathic hypogonadotropic hypogonadism: spontaneous reversal associated with a homozygous mutation in the gonadotropin-releasing hormone receptor.  J Clin Endocrinol Metab. 2001;  86(6) 2470-2475
  • 150 Caron P, Chauvin S, Christin-Maitre S et al.. Resistance of hypogonadotropic patients with mutated GnRH receptor genes to pulsatile GnRH administration.  J Clin Endocrinol Metab. 1999;  84(3) 990-996
  • 151 Lanfranco F, Gromoll J, von Eckardstein S, Herding E M, Nieschlag E, Simoni M. Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism.  Eur J Endocrinol. 2005;  153(6) 845-852
  • 152 Lin L, Conway G S, Hill N R, Dattani M T, Hindmarsh P C, Achermann J C. A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oligospermia.  J Clin Endocrinol Metab. 2006;  91(12) 5117-5121
  • 153 Soderlund D, Canto P, de la Chesnaye E, Ulloa-Aguirre A, Mendez J P. A novel homozygous mutation in the second transmembrane domain of the gonadotrophin releasing hormone receptor gene.  Clin Endocrinol (Oxf). 2001;  54(4) 493-498
  • 154 Karges B, Karges W, de Roux N. Clinical and molecular genetics of the human GnRH receptor.  Hum Reprod Update. 2003;  9(6) 523-530
  • 155 Antelli A, Baldazzi L, Balsamo A et al.. Two novel GnRHR gene mutations in two siblings with hypogonadotropic hypogonadism.  Eur J Endocrinol. 2006;  155(2) 201-205
  • 156 Vagenakis G A, Sgourou A, Papachatzopoulou A, Kourounis G, Papavassiliou A G, Georgopoulos N A. The gonadotropin-releasing hormone (GnRH)-1 gene, the GnRH receptor gene, and their promoters in patients with idiopathic hypogonadotropic hypogonadism with or without resistance to GnRH action.  Fertil Steril. 2005;  84(6) 1762-1765

Lawrence C LaymanM.D. 

Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology

The Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3360

Email: Llayman@mcg.edu

    >