CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 271-275
DOI: 10.1055/s-0037-1610369
paper
Copyright with the author

Electrophilic Sulfoximidations of Thiols by Hypervalent Iodine Reagents

Han Wang
,
Duo Zhang
,
Mengwei Cao
,
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: Carsten.bolm@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 24 August 2018

Accepted: 03 September 2018

Publication Date:
19 September 2018 (online)


Abstract

A new electrophilic sulfoximidation of thiols has been developed. Using sodium hydride as a base, the treatment of sulfoximidoyl-containing hypervalent iodine(III) reagents with thiols affords the corresponding N-sulfenylsulfoximines (N-thiosulfoximines) in good to excellent yields. A plausible mechanism is proposed.

Supporting Information

 
  • References


    • For representative contributions, see:
    • 2a Sparks TC. Loso MR. Babcock JM. Kramer VJ. Zhu Y. Nugent BM. Thomas JD. Modern Crop Protection Compounds . Kraemer W. Schirmer U. Jeschke P. Witschel M. Wiley-VCH; Weinheim: 2012: 1226
    • 2b Arndt KE. Bland DC. Irvine NM. Powers SL. Martin TP. McConnell JR. Podhorez DE. Renga JM. Ross R. Roth GA. Scherzer BD. Toyzan TW. Org. Process Res. Dev. 2015; 19: 454
    • 2c Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
    • 2d Frings M. Bolm C. Blum A. Gnamm C. Eur. J. Med. Chem. 2017; 126: 225
  • 3 Trost BM. Matsuoka RT. Synlett 1992; 27
  • 4 Bizet V. Hendriks CM. M. Bolm C. Chem. Soc. Rev. 2015; 44: 3378
    • 5a Bizet V. Kowalczyk R. Bolm C. Chem. Soc. Rev. 2014; 43: 2426
    • 5b Shen X. Hu J. Eur. J. Org. Chem. 2014; 4437
  • 6 Oae S. Harada K. Tsujihara K. Furukawa N. Int. J. Sulfur Chem., Part A 1972; 2: 49
  • 7 Goldberg FW. Kettle JG. Xiong J. Lin D. Tetrahedron 2014; 70: 6613
  • 8 For a sulfoxide to sulfilimine conversion followed by oxidation to give sulfoxides, see: Hendriks CM. M. Lamers P. Engel J. Bolm C. Adv. Synth. Catal. 2013; 355: 3363

    • For direct approaches towards NH-sulfoximines, see:
    • 9a Zenzola M. Doran R. Degennaro L. Luisi R. Bull JA. Angew. Chem. Int. Ed. 2016; 55: 7203
    • 9b Tota A. Zenzola M. Chawner SJ. St Jon-Campbell S. Carlucci C. Romanazzi G. Degennaro L. Bull JA. Luisi R. Chem. Commun. 2017; 53: 348
    • 9c Yu H. Zhen L. Bolm C. Angew. Chem. Int. Ed. 2018; 57: 324

      For selected examples from our group, see: N-arylation:
    • 10a Bolm C. Hildebrand JP. J. Org. Chem. 2000; 65: 169
    • 10b Miyasaka M. Hirano K. Satoh T. Kowalczyk R. Bolm C. Miura M. Org. Lett. 2011; 13: 359

    • N-Alkynylation:
    • 10c Wang L. Huang H. Priebbenow DL. Pan F. Bolm C. Angew. Chem. Int. Ed. 2013; 52: 3478
    • 10d Priebbenow DL. Becker P. Bolm C. Org. Lett. 2013; 15: 6155

    • N-Acylation:
    • 10e Cheng H. Bolm C. Synlett 2016; 27: 769

    • N-Alkylation:
    • 10f Hendriks CM. M. Bohmann RA. Bohlem M. Bolm C. Adv. Synth. Catal. 2014; 356: 1847
    • 10g Wang H. Zhang D. Bolm C. Angew. Chem. Int. Ed. 2018; 57: 5863
  • 11 Wang H. Cheng Y. Becker P. Raabe G. Bolm C. Angew. Chem. Int. Ed. 2016; 55: 12655
  • 12 For related hypervalent iodine reagents having a 1,2-benziodoxole core, see: Wang H. Zhang D. Sheng H. Bolm C. J. Org. Chem. 2017; 82: 11854
  • 13 For an alternative reaction behavior of such species, see: Wang H. Zhang D. Bolm C. Chem. Eur. J. 2018; in press; DOI: org/10.1002/chem.201803975.
    • 14a Buchholt HC. Org. Prep. Proced. Int. 1970; 2: 177
    • 14b Akutagawa K. Furukawa N. Oae S. Bull. Chem. Soc. Jpn. 1984; 57: 518
  • 15 Zhu H. Yu JT. Cheng J. Chem. Commun. 2016; 52: 11908
    • 16a Peng Y. Lin Y. Nie R. Zheng Y. Liu Y. Guo L. Wu Y. Eur. J. Org. Chem. 2018; 844
    • 16b Yang L. Feng J. Qiao M. Zeng Q. Org. Chem. Front. 2018; 5: 24
  • 17 For the preparation of sulfoximines with N–SCF3 groups, which were prepared by reacting NBr-sulfoximines with AgSCF3, see: Bohnen C. Bolm C. Org. Lett. 2015; 17: 3011
  • 18 In these experiments, combinations of 4a (2 equiv) and NaH (2.1 equiv) were applied; satisfying results were not achieved in DCE at r.t. or 50 °C or in CH2Cl2 at 50 °C.

    • For selected overviews on hypervalent iodine reagents, see:
    • 19a Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
    • 19b Singh FV. Wirth T. Chem. Asian J. 2014; 9: 950
    • 19c Ochiai M. Chem. Rec. 2007; 7: 12
    • 19d Uyanik M. Ishihara K. ChemCatChem 2012; 4: 177
    • 19e Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 19f Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 19g Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds. Wiley; New York: 2013
    • 19h Hypervalent Iodine Chemistry . In Topics in Current Chemistry . Vol. 373. Wirth T. Springer; Switzerland: 2015
    • 20a Tinnis F. Stridfeldt E. Lundberg H. Adolfsson H. Olofsson B. Org. Lett. 2015; 17: 2688
    • 20b Malmgren J. Santoro S. Jalalian N. Himo F. Olofsson B. Chem. Eur. J. 2013; 19: 10334