Synthesis 2016; 48(23): 4253-4259
DOI: 10.1055/s-0035-1560565
paper
© Georg Thieme Verlag Stuttgart · New York

Type 2 Ring-Opening Reactions of Cyclopropanated 7-Oxabenzonorbornadienes with Carboxylic Acid Nucleophiles

Emily Carlson
Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada   Email: wtam@uoguelph.ca
,
Daniel Hong
Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada   Email: wtam@uoguelph.ca
,
William Tam*
Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada   Email: wtam@uoguelph.ca
› Author Affiliations
Further Information

Publication History

Received: 20 June 2016

Accepted after revision: 20 July 2016

Publication Date:
24 August 2016 (online)


Abstract

Ring-opening reactions of strained heterocyclic compounds provide efficient routes to various organic frameworks. In this work, the ability of carboxylic acid nucleophiles to promote ring-opening of cyclopropanated 7-oxabenzonorbornadienes was investigated. Reactions proceeded smoothly to yield 2-naphthylmethyl esters in moderate yields, and optimal conditions were found with the use of 10 mol% p-toluenesulfonic acid monohydrate in dichloroethane heated to 90 °C. The amount of nucleophile could be decreased from a large excess to 8 equivalents without diminishing the yield. When varying the structure of the acid catalyst or carboxylic acid nucleophile, reaction rates showed a marked dependence on acidity of these species. Ring-opening was well tolerated by functionalized substrates, with substitution on the bridgehead or aromatic portions of the molecule. The present work is the second account of this type of reaction, and provides a new route to 2-naphthylmethyl esters. The transformations observed in this work should be useful in predicting the reactivity of similar fused-ring systems.

Supporting Information

 
  • References

    • 1a Lautens M, Ma S, Chiu P. J. Am. Chem. Soc. 1997; 119: 6478
    • 1b Chiu P, Lautens M. Top. Curr. Chem. 1997; 190: 1
    • 1c Edmunds M, Raheem MA, Boutin R, Tait K, Tam W. Beilstein J. Org. Chem. 2016; 12: 239
    • 1d Okada M, Sumitomo H, Yamada S, Atsumi M. Macromolecules 1986; 19: 953
    • 1e Bertolini F, Macchia F, Pineschi M. Tetrahedron Lett. 2006; 47: 9173
    • 1f Crotti S, Bussolo VD, Pineschi M. Synthesis 2012; 44: 1511
  • 2 Rayabarapu DK, Cheng C.-H. Acc. Chem. Res. 2007; 40: 971
  • 3 Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
  • 4 For a review of tranisiton-metal-catalyzed [2+2] cycloadditions between bicyclic alkenes and alkynes, see: Tam W, Jack K, Goodreid J, Cockburn N. Adv. Org. Synth. 2013; 6: 59
    • 5a Burton RR, Tam W. J. Org. Chem. 2007; 72: 7333
    • 5b Burton RR, Tam W. Tetrahedron Lett. 2006; 47: 7185
  • 6 Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
  • 7 Villeneuve K, Riddell N, Tam W. Tetrahedron 2006; 62: 3823
  • 8 Villeneuve K, Tam W. Eur. J. Org. Chem. 2006; 5449
  • 9 Villeneuve K, Tam W. Organometallics 2007; 26: 6082
  • 10 Villeneuve K, Tam W. Organometallics 2006; 25: 843
  • 11 Villeneuve K, Tam W. J. Am. Chem. Soc. 2006; 128: 3514
  • 12 Ballantine M, Menard ML, Tam W. J. Org. Chem. 2009; 74: 7570
  • 13 Allen A, Le Marquand P, Burton RR, Villeneuve K, Tam W. J. Org. Chem. 2007; 72: 7849
    • 14a Leong P, Lautens M. J. Org. Chem. 2004; 69: 2194
    • 14b Bertozzi F, Pineschi M, Moacchia F, Arnold LA, Minnaard AJ, Feringa BL. Org. Lett. 2002; 4: 2703
    • 14c Fan E, Shi W, Lowary T. J. Org. Chem. 2007; 72: 2917
    • 14d Lautens M, Dockendorff C, Fagnou K, Malicki A. Org. Lett. 2002; 4: 1311
    • 14e Duan J, Cheng C.-H. Tetrahedron Lett. 1993; 34: 4019
    • 14f Feng C, Nandi TS, Cheng C.-H. J. Org. Chem. 1999; 64: 3538
    • 14g Lautens M, Hiebert S. J. Am. Chem. Soc. 2004; 126: 1437
    • 14h Wu MS, Jeganmohan M, Cheng C.-H. J. Org. Chem. 2005; 70: 9545
  • 15 Lautens M, Rovis T. Tetrahedron 1999; 55: 8967
  • 16 Madan S, Cheng C.-H. J. Org. Chem. 2006; 71: 8312
  • 17 McKee M, Haner J, Carlson E, Tam W. Synthesis 2014; 46: 1518
    • 18a Carlson E, Duret G, Blanchard N, Tam W. Synth. Commun. 2016; 46: 55
    • 18b Lough AJ, Carlson E, Tam W. IUCrData 2016; 1: x160341
  • 19 Carlson E, Tam W. Synthesis 2016; 48: 2449
  • 20 de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
  • 21 Carlson E, Haner J, McKee M, Tam W. Org. Lett. 2014; 16: 1776
  • 22 Carlson E, Tam W. Org. Lett. 2016; 18: 2134
  • 23 Tigchelaar A, Haner J, Carlson E, Tam W. Synlett 2014; 25: 2355
  • 24 Jencks WP, Regenstein J In Ionization Constants of Acids and Bases, Handbook of Biochemistry . Sober MA. Chemical Rubber Company; Cleveland: 1968: 305
  • 25 Harris DC. Quantitative Chemical Analysis . 8th ed. W. H. Freeman and Company; New York: 2010: AP11
  • 26 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals . 6th ed. Elsevier Inc; Oxford: 2009: 194
  • 27 Carey FA, Sundberg RA. Advanced Organic Chemistry Part A: Structure and Mechanisms . 5th ed. Springer; New York: 2007: 1
  • 28 Velkov T, Horne J, Laguerre A, Jones E, Scanlon MJ, Porter CJ. H. Chem. Biol. 2007; 14: 452
  • 29 Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
  • 30 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
  • 31 Ly T, Krout M, Pham DK, Tani K, Stoltz BM, Julian RR. J. Am. Chem. Soc. 2007; 129: 1864
  • 32 Guan B.-T, Xiang S.-K, Wiang B, Sun Z, Wang Y, Zhao K, Zhang J. J. Am. Chem. Soc. 2008; 130: 3268
  • 33 Rao CB, Chinnababu B, Venkateswarlu Y. J. Org. Chem. 2009; 74: 8856