Synlett 2015; 26(06): 802-806
DOI: 10.1055/s-0034-1379982
letter
© Georg Thieme Verlag Stuttgart · New York

Lanthanide-Catalyzed Oxidative С–O Coupling of 1,3-Dicarbonyl Compounds with Diacyl Peroxides

Alexander O. Terent’ev*
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, Moscow 119991, Russian Federation   Email: alterex@yandex.ru
,
Vera A. Vil’
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, Moscow 119991, Russian Federation   Email: alterex@yandex.ru
,
Gennady I. Nikishin
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, Moscow 119991, Russian Federation   Email: alterex@yandex.ru
,
Waldemar Adam
b   Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
c   Department of Chemistry, Facundo Bueso 110, University of Puerto Rico, Rio Piedras, Puerto Rico 00931, USA
› Author Affiliations
Further Information

Publication History

Received: 21 October 2014

Accepted after revision: 17 December 2014

Publication Date:
03 February 2015 (online)


Abstract

The lanthanide-catalyzed oxidative C–O coupling of α-substituted 1,3-dicarbonyl compounds with diacyl peroxides (act both as oxidant and oxygen substituent) affords oxygen-functionalized adducts in up to 94% yield. The products of this convenient and efficient transformation serve as potentially valuable precursors for the synthesis of natural products and pharmaceuticals.

Supporting Information

 
  • References and Notes

    • 1a Prileschajew N. Ber. Dtsch. Chem. Ges. 1909; 42: 4811
    • 1b Durie AJ, Slawin AM. Z, Lebl T, Kirsch P, O’Hagan D. Chem. Commun. 2012; 48: 9643
    • 2a Kharasch MS, Sosnovsky G. J. Am. Chem. Soc. 1958; 80: 756
    • 2b Boyd DR, Sharma ND, Sbircea L, Murphy D, Belhocine T, Malone JF, James SL, Allen CC. R, Hamilton JT. G. Chem. Commun. 2008; 43: 5535
    • 3a Andrus MB, Lashley JC. Tetrahedron 2002; 58: 845
    • 3b Aldea L, Delso I, Hager M, Glos M, García JI, Mayoral JA, Reiser O. Tetrahedron 2012; 68: 3417
    • 4a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 4b Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 5a Zhang C, Tanga C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 5b Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 26: 5769
    • 6a Adam W, Diehl JW. J. Chem. Soc., Chem. Commun. 1972; 13: 797
    • 6b Perrin CL, Arrhenius T. J. Am. Chem. Soc. 1978; 100: 5249
    • 6c Greene FD. J. Am. Chem. Soc. 1956; 78: 2246
    • 6d Greene FD, Rees WW. J. Am. Chem. Soc. 1958; 80: 3432
    • 6e Adam W, Rucktäschel R. J. Org. Chem. 1978; 43: 3886
    • 6f Darmon MJ, Schuster GB. J. Org. Chem. 1982; 47: 4658
    • 7a Schwarz M, Reiser O. Angew. Chem. Int. Ed. 2011; 50: 10495
    • 7b Yuan C, Axelrod A, Varela M, Danysh L, Siegel D. Tetrahedron Lett. 2011; 52: 2540
    • 7c Griffith JC, Jones KM, Picon S, Rawling MJ, Kariuki BM, Campbell M, Tomkinson NC. O. J. Am. Chem. Soc. 2010; 132: 14409
    • 7d Picon S, Rawling M, Campbell M, Tomkinson NC. O. Org. Lett. 2012; 14: 6250
    • 7e Jones KM, Tomkinson NC. O. J. Org. Chem. 2012; 77: 921
    • 7f Rawling MJ, Rowley JH, Campbell M, Kennedy AR, Parkinson JA, Tomkinson NC. O. Chem. Sci. 2014; 5: 1777
    • 7g Rawling MJ, Tomkinson NC. O. Org. Biomol. Chem. 2013; 11: 1434
  • 8 Yuan C, Liang Y, Hernandez T, Berriochoa A, Houk KN, Siegel D. Nature (London, U.K.) 2013; 499: 192
    • 9a Adam W, Smerz AK. Tetrahedron 1996; 52: 5799
    • 9b Smith AM. R, Billen D, Hii KK. Chem. Commun. 2009; 26: 3925
    • 9c Smith AM. R, Rzepa HS, White AJ. P, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085
    • 9d Christoffers J, Werner T, Frey W, Baro A. Eur. J. Org. Chem. 2003; 24: 4879
    • 9e Rahman MT, Nishino H. Org. Lett. 2003; 5: 2887
    • 9f Christoffers J. J. Org. Chem. 1999; 64: 7668
    • 9g Richardson AM, Chen C.-H, Snider BB. J. Org. Chem. 2007; 72: 8099
    • 10a Terent’ev AO, Borisov DA, Yaremenko IA, Chernyshev VV, Nikishin GI. J. Org. Chem. 2010; 75: 5065
    • 10b Terent’ev AO, Borisov DA, Semenov VV, Chernyshev VV, Dembitsky VM, Nikishin GI. Synthesis 2011; 2091
    • 11a Terent’ev AO, Krylov IB, Timofeev VP, Starikova ZA, Merkulova VM, Ilovaisky AI, Nikishin GI. Adv. Synth. Catal. 2013; 355: 2375
    • 11b Krylov IB, Terent’ev AO, Timofeev VP, Shelimov BN, Novikov RA, Merkulova VM, Nikishin GI. Adv. Synth. Catal. 2014; 356: 2266
    • 11c Liu Y.-Y, Yang X.-H, Yang J, Song R.-J, Li J.-H. Chem. Commun. 2014; 50: 6906
    • 12a Yu J, Tian J, Zhanga C. Adv. Synth. Catal. 2010; 352: 531
    • 12b Moriarty RM, Vaid RK, Hopkins TE, Vaid BK, Prakash O. Tetrahedron Lett. 1990; 31: 201
    • 12c Liu W.-B, Chen C, Zhang Q, Zhu Z.-B. Beilstein J. Org. Chem. 2011; 7: 1436
    • 12d Uyanik M, Suzuki D, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 13a Citterio A. J. Org. Chem. 1989; 54: 2703
    • 13b Cong Z, Miki T, Urakawa O, Nishino H. J. Org. Chem. 2009; 74: 3978
  • 14 Moloney MG, Nettleton E, Smithies K. Tetrahedron Lett. 2002; 43: 907
  • 15 Citterio A, Cerati A, Sebastiano R. Tetrahedron Lett. 1989; 30: 1289
  • 16 Wang Z, Bi X, Liang Y, Liao P, Dong D. Chem. Commun. 2014; 50: 3976
    • 17a Lee J, Oya S, Snyder JK. Tetrahedron Lett. 1991; 32: 5899
    • 17b Lifchits O, Demoulin N, List B. Angew. Chem. Int. Ed. 2011; 50: 9680
  • 18 Lloris ME, Gálvez N, Marquet J, Moreno-Mañas M. Tetrahedron 1991; 47: 8031
    • 19a Salomon R, Salomon M, Zagorski M, Reuter J, Coughlin D. J. Am. Chem. Soc. 1982; 104: 1008
    • 19b Chmielewski M, Achmatowicz O, Zamojski A. Bull. Pol. Acad. Sci. Chem. 1984; 32: 19
    • 19c Gandolfi C, Cotini L, Mantovanini M, Caselli G, Clavenna G, Omini C. US 5656656A1, 1997
    • 19d Uchida I, Hatanaka H, Nitta K, Hashimoto S, Okuhara M, Murai H, Hashimoto M. US 5061730A, 1991
  • 20 Cheng G, Huang X, Zhang H, Hu Y, Kan C. RSC Adv. 2014; 4: 29042
  • 21 Miao C.-B, Wang Y.-H, Xing M.-L, Lu X.-W, Sun X.-Q, Yang H.-T. J. Org. Chem. 2013; 78: 11584
    • 22a Imamoto T. Lanthanides in Organic Synthesis . Academic Press; New York: 1994
    • 22b Molander GA. Chem. Rev. 1992; 92: 29
    • 22c Lu J, Bai Y, Wang Z, Yang B, Ma H. Tetrahedron Lett. 2000; 41: 9075
  • 23 Caution: Although we have not encountered any difficulties in working with peroxides, precautions such as the use of safety shields and fume hood is mandatory.Representative Example for the Synthesis of the Coupling Product 2-{[1-Benzyl-1-(ethoxycarbonyl)-2-oxopropoxy]-carbonyl}-2-ethylbutanoic Acid (3e)LaCl3·7H2O (167 mg, 0.45 mmol, molar ratio: 0.2 mol LaCl3·7H2O/1 mol oxoester 1b) was added with stirring to a solution of oxoester 1b (500 mg, 2.27 mmol) in MeOH (10 mL) at r.t. The mixture was stirred at 20–25 °С for 5 min. Then malonyl peroxide (2b, 539 mg, 3.41 mmol, molar ratio: 1.5 mol 2b/1 mol oxoester 1b) was added. The reaction mixture was stirred at 40°С for 6 h, cooled to 20–25 °С, the solvent was removed at water-aspirator pressure. A mixture of solvents PE–EtOAc–CH2Cl2 in volume ratio 1:2:2 (30 mL) was added to the reaction residue, and the solid collected by filtration. The solid was washed with a mixture of solvents PE–EtOAc–CH2Cl2 in volume ratio 1:2:2 (3 × 10 mL). The combined organic phases were concentrated at water-aspirator pressure. Product 3e was isolated by chromatography on SiO2 eluting with PE–EtOAc (containing 2% AcOH) in a linear gradient of EtOAc from 30 to 90 vol%. Yield of 3e was 91% (782 mg, 2.07 mmol), white powder, mp 89–93 °С. Rf = 0.38 (PE–EtOAc = 5:1 + 2% AcOH). 1Н NMR (300.13 MHz, CDCl3): δ = 0.83–0.90 (m, 6 H), 1.14 (t, 3 H, J = 7.3 Hz), 1.93–2.00 (m, 4 H), 2.20 (s, 3 H), 3.43 (d, J = 14.7 Hz, 1 H, CH2), 3.50 (d, J = 14.7 Hz, 1 H, CH2), 4.13 (q, 2 H, J = 7.3 Hz), 7.08–7.11 (m, 2 H), 7.21–7.23 (m, 3 H), 10.32 (br s, 1 H). 13C NMR (75.48 MHz, CDCl3): δ = 8.2, 13.7, 25.4, 25.6, 27.6, 39.9, 58.6, 62.3, 88.6, 127.4, 128.2, 130.1, 133.4, 166.3, 170.6, 176.1, 201.2. ESI-HRMS: m/z [M + Na]+ calcd for [C20H26NaO7]+: 401.1571; found: 401.1573. Anal. Calcd (%) for С20Н26О7: С, 63.48; Н, 6.93. Found: С, 63.44; Н, 6.90. IR (KBr): 3423, 2975, 1764, 1710, 1355, 1312, 1258, 1234, 1128, 1060, 1014, 708, 516 cm–1.
    • 24a Denney DZ, Valega TM, Denney DB. J. Am. Chem. Soc. 1964; 86: 46
    • 24b Lee JB, Uff BC. Q. Rev. Chem. Soc. 1967; 21: 429
  • 25 Bunce NJ, Tanner DD. J. Am. Chem. Soc. 1969; 91: 6096
    • 26a Greene FD, Rees WW. J. Am. Chem. Soc. 1960; 82: 890
    • 26b Yu J, Cui J, Zhang C. Eur. J. Org. Chem. 2010; 36: 7020
    • 27a Liang Y.-F, Jiao N. Angew. Chem. 2014; 126: 558
    • 27b Christoffers J, Kauf T, Werner T, Rössle M. Eur. J. Org. Chem. 2006; 2601
    • 27c Smith AM. R, Rzepa HS, White AJ. P, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085
    • 27d Odagi M, Furukori K, Watanabe T, Nagasawa K. Chem. Eur. J. 2013; 19: 16740
    • 27e Yin C, Cao W, Lin L, Liu X, Feng X. Adv. Synth. Catal. 2013; 355: 1924