Synthesis 2010(19): 3289-3294  
DOI: 10.1055/s-0030-1257937
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Room-Temperature, Copper-Catalyzed Cascade Process for Diethyl 2-Aryl-3,4-dihydro-4-oxo-1,1(2H)-naphthalenedicarboxylate

Zhengqiu Lia,b, Liangbin Fub,c, Jiajia Weic, Chengyong Haa, Duanqing Peic, Qian Cai*c, Ke Ding*c
a Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. of China
b Graduate School of the Chinese Academy of Sciences, Beijing, P. R. of China
c Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No.190, Kaiyuan Avenue, Science Park, Guangzhou 510530, P. R. of China
Fax: +86(20)32015299; e-Mail: cai_qian@gibh.ac.cn; e-Mail: ding_ke@gibh.ac.cn;
Further Information

Publication History

Received 23 March 2010
Publication Date:
30 July 2010 (online)

Abstract

A room-temperature cascade process for the formation of diethyl 2-aryl-3,4-dihydro-4-oxo-1,1(2H)-naphthalenedicarboxylate is described by using a combination of Michael addition and copper-catalyzed α-arylation of malonic acid derivatives. The protocol worked well for a variety of 1-(2-iodoaryl)enones and displayed great functional group compatibility.

    References

  • 1a Park OS. Jang BS. Arch. Pharmacal. Res.  1995,  18:  277 
  • 1b Ouaglia W. Pigini M. Piergentili A. Giannella M. Marucci G. Poggesi E. Leonardi A. Melchiorre C. J. Med. Chem.  1999,  42:  2961 
  • 1c Jung J.-C. Lee J.-H. Oh S. Lee J.-G. Park O.-S. Bioorg. Med. Chem. Lett.  2004,  14:  5527 
  • 1d Yours S. Durieux-Poissonnier S. Lipka-Belloli E. Guelzim H. Bochu C. Audinot V. Boutin JA. Delagrange P. Bennejean C. Renard P. Lesieur D. Bioorg. Med. Chem.  2003,  11:  753 
  • 2a Fillion E. Fishlock D. Wilsily A. Goll JM. J. Org. Chem.  2005,  70:  1316 
  • 2b Selveraj S. Rajendran AS. Arumugam A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1987,  26:  1047 
  • 3 Hurtley WRH. J. Chem. Soc.  1929,  1870 
  • 4a Setsune J. Matsukawa K. Wakemoto H. Kaito T. Chem. Lett.  1981,  367 
  • 4b Setsune J. Matsukawa K. Kaito T. Tetrahedron Lett.  1982,  23:  663 
  • 4c Suzuki H. Kobayashi T. Yoshida Y. Osuka A. Chem. Lett.  1983,  193 
  • 4d Suzuki H. Yi Q. Inoue J. Kusume K. Ogawa T. Chem. Lett.  1987,  887 
  • For recent reviews on copper-catalyzed Ullmann-type coupling reactions, see:
  • 5a Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 5b Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 5c Lindley J. Tetrahedron  1984,  40:  1433 
  • 5d Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 5e Monnier F. Taillefer M. Angew. Chem. Int. Ed.  2009,  48:  6954 
  • 6 Rieu J.-P. Boucherle A. Cousse H. Mouzin G. Tetrahedron  1986,  42:  4095 
  • 7a Hennessy EJ. Buchwald SL. Org. Lett.  2002,  4:  269 
  • 7b Cristau H.-J. Cellier PP. Splinder J.-F. Taillefer M. Chem. Eur. J.  2004,  10:  5607 
  • 7c Xie X. Cai G. Ma D. Org. Lett.  2005,  7:  4693 
  • 7d Yip SF. Cheung HY. Zhou Z. Kwong FY. Org. Lett.  2007,  9:  3469 
  • 8a Michael A. J. Prakt. Chem.  1887,  35:  349 
  • 8b Perlmutter P. Conjugate Addition Reactions in Organic Synthesis   Pergamon; Oxford: 1992. 
  • 8c Christoffers J. Eur. J. Org. Chem.  1998,  1259 
  • 9 Halland N. Hansen T. Jøgensen KA. Angew. Chem. Int. Ed.  2003,  42:  4955