Synlett 2010(8): 1268-1272  
DOI: 10.1055/s-0029-1219789
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Recyclable Gallium as Catalyst Precursor for a Convenient and Solvent-Free Method for the Intermolecular Addition of Sulfonamides to Alkenes

Daniel Jaspers, Raphael Kubiak, Sven Doye*
Institut für Reine und Angewandte Chemie, Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
Fax: +49(441)7983329; e-Mail: doye@uni-oldenburg.de;
Further Information

Publication History

Received 8 February 2010
Publication Date:
23 March 2010 (online)

Abstract

Gallium(III) iodide, which is conveniently formed in situ from gallium and iodine, is a competent catalyst for the inter- and intramolecular addition of p-toluenesulfonamides to alkenes. After each reaction, the metallic gallium can easily be recycled and used for subsequent transformations.

    References and Notes

  • For recent reviews, see:
  • 1a Müller TE. Beller M. Chem. Rev.  1998,  98:  675 
  • 1b Haak E. Doye S. Chem. Unserer Zeit  1999,  33:  296 
  • 1c Brunet JJ. Neibecker D. In Catalytic Heterofunctionalization   Togni A. Grützmacher H. Wiley-VCH; Weinheim: 2001.  p.91 
  • 1d Bytschkov I. Doye S. Eur. J. Org. Chem.  2003,  935 
  • 1e Pohlki F. Doye S. Chem. Soc. Rev.  2003,  32:  104 
  • 1f Hartwig JF. Pure Appl. Chem.  2004,  76:  507 
  • 1g Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2004,  104:  3079 
  • 1h Doye S. Synlett  2004,  1653 
  • 1i Odom AL. Dalton Trans.  2005,  225 
  • 1j Hultzsch KC. Adv. Synth. Catal.  2005,  347:  367 
  • 1k Hultzsch KC. Org. Biomol. Chem.  2005,  3:  1819 
  • 1l Severin R. Doye S. Chem. Soc. Rev.  2007,  36:  1407 
  • 1m Brunet J.-J. Chu N.-C. Rodriguez-Zubiri M. Eur. J. Inorg. Chem.  2007,  4711 
  • 1n Aillaud I. Collin J. Hannedouche J. Schulz E. Dalton Trans.  2007,  5105 
  • 1o Lee AV. Schafer LL. Eur. J. Inorg. Chem.  2007,  2243 
  • 1p Müller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev.  2008,  108:  3795 
  • 1q Doye S. In Science of Synthesis   Vol. 40a:  Enders D. Schaumann E. Thieme; Stuttgart: 2009.  p.241 
  • 2 A recyclable polymer-supported organolanthanide hydroamination catalyst has been reported: Zhao J. Marks TJ. Organometallics  2006,  25:  4763 
  • For selected examples of heterogeneous hydroamination catalysts, see:
  • 3a Jimenez O. Müller TE. Sievers C. Spirkl A. Lercher JA. Chem. Commun.  2006,  2974 
  • 3b Motokura K. Nakagiri N. Mori K. Mizugaki T. Ebitani K. Jitsukawa K. Kaneda K. Org. Lett.  2006,  8:  4617 
  • 3c Neff V. Müller TE. Lercher JA. Chem. Commun.  2002,  906 
  • 3d Penzien J. Müller TE. Lercher JA. Chem. Commun.  2000,  1753 
  • 3e Hölderich W. Hesse M. Näumann F. Angew. Chem., Int. Ed. Engl.  1988,  27:  226 ; Angew. Chem. 1988, 100, 232
  • 4 Yamaguchi M. Matsunaga S. Shibasaki M. In Encyclopedia of Reagents for Organic Synthesis   2nd ed., Vol. 7:  Paquette LA. Crich D. Fuchs PL. Molander GA. Wiley; New Delhi: 2009.  p.5209 
  • For synthetic applications of gallium(III) halides, see:
  • 5a Amemiya R. Yamaguchi M. Eur. J. Org. Chem.  2005,  5145 
  • 5b Sun P. Hu Z. Huang Z. Synth. Commun.  2004,  34:  4293 
  • 5c Zhou H. Zeng C. Ren L. Liao W. Huang X. Synlett  2006,  3504 
  • 5d Amemiya R. Yamaguchi M. Adv. Synth. Catal.  2007,  349:  1011 
  • 5e Yadav JS. Reddy BVS. Sengupta S. Biswas SK. Synthesis  2009,  1301 
  • 5f Nishimoto Y. Onishi Y. Yasuda M. Baba A. Angew. Chem. Int. Ed.  2009,  48:  9131 ; Angew. Chem. 2009, 121, 9295
  • 5g Yadav JS. Reddy BVS. Eeshwaraiah B. Gupta MK. Biswas SK. Tetrahedron Lett.  2005,  46:  1161 
  • 6 Han Y. Huang Y.-Z. Tetrahedron Lett.  1995,  36:  7277 
  • For selected examples of acid- or metal-catalyzed additions of sulfonamides to alkenes, see:
  • 7a Zhang J. Yang C.-G. He C. J. Am. Chem. Soc.  2006,  128:  1798 
  • 7b Schlummer B. Hartwig JF. Org. Lett.  2002,  4:  1471 
  • 7c Brouwer C. He C. Angew. Chem. Int. Ed.  2006,  45:  1744 ; Angew. Chem. 2006, 118, 1776
  • 7d Li Z. Zhang J. Brouwer C. Yang C.-G. Reich NW. He C. Org. Lett.  2006,  8:  4175 
  • 7e Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett.  2006,  8:  4179 
  • 7f Komeyama K. Morimoto T. Takaki K. Angew. Chem. Int. Ed.  2006,  45:  2938 ; Angew. Chem. 2006, 118, 3004
  • 7g Qin H. Yamagiwa N. Matsunaga S. Shibasaki M. Chem. Asian. J.  2007,  2:  150 
  • 7h Patil NT. Lutete LM. Nishina N. Yamamoto Y. Tetrahedron Lett.  2006,  47:  4749 
  • 7i Michaux J. Terrasson V. Marque S. Wehbe J. Prim D. Campagne J.-M. Eur. J. Org. Chem.  2007,  2601 
  • 7j Huang J.-M. Wong C.-M. Xu F.-X. Loh T.-P. Tetrahedron Lett.  2007,  48:  3375 
  • 7k Yang L. Xu L.-W. Xia C.-G. Tetrahedron Lett.  2008,  49:  2882 
  • 7l Yang L. Xu L.-W. Zhou W. Gao Y.-H. Sun W. Xia C.-G. Synlett  2009,  1167 
  • 7m Giner X. Nájera C. Synlett  2009,  3211 
  • 9 The I2-catalyzed intermolecular addition of sulfonamides to vinyl arenes has been described: Yadav JS. Reddy BVS. Rao TS. Krishna BM. Tetrahedron Lett.  2009,  50:  5351 
8

General Procedure Exemplified by the Reaction of Cyclohexene (1) with p -Toluenesulfonamide
An oven-dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was charged with gallium (99.9999% from Acros Organics, 11 mg, 0.15 mmol, 5 mol%) and p-toluenesulfonamide (514 mg, 3.0 mmol). Then the tube was evacuated and flushed with argon, and cyclohexene (1, 493 mg, 6.0 mmol) and iodine (58 mg, 0.23 mmol, 7.5 mol%) were added. The tube was sealed, and the resulting mixture was heated to 105 ˚C for 2 h. After the tube had been cooled to r.t., the reaction mixture was diluted with CH2Cl2 (20 mL). The resulting solution was separated from the precipitated gallium by syringe and concentrated under vacuum. Finally, the crude product was purified by flash chromatography (light PE-EtOAc, 4:1) to give sulfon-amide 2 (730 mg, 2.9 mmol, 96%) as a colorless solid; mp 82 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 0.97-1.21 (m, 5 H), 1.38-1.47 (m, 1 H), 1.50-1.59 (m, 2 H), 1.63-1.70 (m, 2 H), 2.35 (s, 3 H), 2.98-3.10 (m, 1 H), 4.67 (d, J H,H = 7.4 Hz, 1 H, NH), 7.22 (d, J H,H = 8.0 Hz, 2 H), 7.70 (d, J H,H = 8.2 Hz, 2 H) ppm. ¹³C NMR (125 MHz, DEPT, CDCl3): δ = 21.5 (CH3), 24.6 (CH2), 25.1 (CH2), 33.8 (CH2), 52.5 (CH), 126.9 (CH), 129.6 (CH), 138.4 (C), 143.0 (C) ppm. IR (neat): 1/λ = 3305, 2931, 2851, 1323, 1156, 662 cm. HRMS (70 eV): m/z calcd. (C13H19NO2S) 253.1136; found 253.1140. For the next catalytic reaction, the Schlenk tube which still contained the gallium was evacuated, flushed with argon, and charged with p-toluenesulfonamide (514 mg, 3.0 mmol), cyclohexene (1, 493 mg, 6.0 mmol) and iodine (58 mg, 0.23 mmol, 7.5 mol%), and the reaction was run as described above.