Synlett 2008(20): 3221-3225  
DOI: 10.1055/s-0028-1087244
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Ultrasound-Assisted Synthesis of Symmetrical Biaryls by Palladium-Catalyzed Homocoupling of Aryl n-Butyl Tellurides

Fateh Veer Singha, Hélio A. Stefani*a,b
a Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP - Brazil
b Deprtamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP - Brazil
Fax: +55(11)38154418; e-Mail: hstefani@usp.br;
Further Information

Publication History

Received 11 June 2008
Publication Date:
24 November 2008 (online)

Abstract

An ultrasound-assisted synthesis of symmetrical biaryls with electron-withdrawing or -donating substituents is described and illustrated by palladium-catalyzed homocoupling reaction of aryl tellurides. This procedure offers easy access to biaryls in short reaction time, and the products are achieved in good to excellent yields.

    References

  • 1a Nising CF. Schmid UK. Nieger M. Brase S. J. Org. Chem.  2004,  69:  6830 
  • 1b Bringmann G. Ochse M. Schupp O. Tasler S. In Progress in the Chemistry of Organic Natural Products   Vol. 82:  Springer; Vienna: 2001. 
  • 1c Bringmann G. Tasler S. Tetrahedron  2001,  57:  331 
  • 1d Franck B. Gottschalk EM. Ohnsorge U. Huper F. Chem. Ber.  1966,  99:  3842 
  • 1e Torssell KBG. Natural Product Chemistry   Taylor and Francis; New York: 1997. 
  • 1f Thomson RH. The Chemistry of Natural Products   Blackie and Son; Glasgow: 1985. 
  • 2a Nicolaou KC. Boddy NC. Brase S. Winssinger N. Angew. Chem. Int. Ed.  1999,  38:  2096 ; Angew. Chem. 1999, 111, 2230
  • 2b Birkenhager WH. de Leeuw PW. J. Hypertens.  1999,  17:  873 
  • 2c Goa KL. Wagstaff AJ. Drugs  1996,  51:  820 
  • 2d François G. Timperman G. Holenz J. Aké Assi L. Geuder T. Maes L. Dubois J. Hanocq M. Bringmann G. Ann. Trop. Med. Parasitol.  1996,  90:  115 
  • 3 Elsenbaumer RL. Shacklette LW. Handbook of Conducting Polymers   Vol. 1:  Skotheim TA. Marcel Dekker; New York: 1986.  p.215 
  • 4a Chemia DS. Zyss J. Nonlinear Optical Properties of Organic Molecules and Crystals   Academic Press; New York: 1987. 
  • 4b Kobayashi K. Nonlinear Optics of Organics and Semiconductors   Springer; Tokyo: 1989. 
  • 5a Noyori R. Chem. Soc. Rev.  1989,  18:  187 
  • 5b Andersen NG. Maddaford SP. Keay BA. J. Org. Chem.  1996,  61:  9556 
  • 6 Mikes F. Boshart G. J. Chromatogr.  1978,  149:  455 
  • 7a Yamamura K. Ono S. Tabushi I. Tetrahedron Lett.  1988,  29:  1797 
  • 7b Yamamura K. Ono S. Ogoshi H. Masuda H. Kuroda Y. Synlett  1989,  18 
  • 8a Huang X. Anderson KW. Zim D. Jiang L. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  6653 
  • 8b Muci AR. Buchwald SL. Topics Org. Chem.  2001,  219:  131 
  • 9 Liang A. Drug Future  2002,  27:  987 
  • 10 Livingston JN. MacDougall M. Ladouceur G. Schoen W. Diabetes  1999,  48 (Suppl. 1):  A199 
  • 11 Singh FV. Vatsyayan R. Roy U. Goel A. Bioorg. Med. Chem. Lett.  2006,  16:  2734 
  • 12 Cella R. Cunha RLOR. Reis AES. Pimenta DC. Klitzke CF. Stefani HA. J. Org. Chem.  2006,  71:  244 
  • 13a Pier E. Yee JGK. Gladstone PL. Org. Lett.  2000,  2:  481 
  • 13b Fanta PE. Synthesis  1974,  9 
  • 13c Sainsbury M. Tetrahedron  1980,  36:  3327 
  • 13d Lindley J. Tetrahedron  1984,  40:  1433 
  • 14a Cravotto G. Beggiato M. Penoni A. Palmisano G. Tollari S. Lévêque J.-M. Bonrath W. Tetrahedron Lett.  2005,  46:  2267 
  • 14b Yoshida H. Yamaryo Y. Ohshita J. Kunai A. Tetrahedron Lett.  2003,  44:  1541 
  • 14c Punna S. Díaz DD. Finn MG. Synlett  2004,  2351 
  • 14d Kabalka GW. Wang L. Tetrahedron Lett.  2002,  43:  3067 
  • 14e Lei A. Zhang X. Tetrahedron Lett.  2002,  43:  2525 
  • 14f Percec V. Bae J.-Y. Zhao M. Hill DH. J. Org. Chem.  1995,  60:  176 
  • 15a Miyake Y. Wu M. Rahman MJ. Kuwatani Y. Iyoda M. J. Org. Chem.  2006,  71:  6110 
  • 15b Xu X. Cheng D. Pei W. J. Org. Chem.  2006,  71:  6637 
  • 16 Xu Z. Mao J. Zhang Y. Catal. Commun.  2008,  9:  97 ; and references cited therein
  • 17 Cahiez G. Moyeux A. Buendia J. Duplais C. J. Am. Chem. Soc.  2007,  129:  13788 ; and references cited therein
  • 18 Robinson MK. Kochurina VS. Hanna JM. Tetrahedron Lett.  2007,  48:  7687 ; and references cited therein
  • 19a Wong MS. Zhang XL. Tetrahedron Lett.  2001,  42:  4087 
  • 19b Yamamoto Y. Suzuki R. Hattori K. Nishiyama H. Synlett  2006,  1027 
  • 20a Uemura S. Wakasugi M. Okano M. J. Organomet. Chem.  1980,  194:  277 
  • 20b Takahashi H. Ohe K. Uemura S. Sugita N. J. Organomet. Chem.  1988,  350:  227 
  • 20c Hirabayashi K. Takeda Y. Shimizu T. Kamigata N. Synlett  2005,  2230 
  • For reviews, see:
  • 21a Petragnani N. Stefani HA. Tetrahedron  2005,  61:  1613 
  • 21b Comasseto JV. Ling LW. Petragnani N. Stefani HA. Synthesis  1997,  373 
  • 21c Zeni G. Braga AL. Stefani HA. Acc. Chem. Res.  2003,  36:  731 
  • 22a Zeni G. Perin G. Cella R. Jacob RG. Braga AL. Silveira CC. Stefani HA. Synlett  2002,  975 
  • 22b Braga AL. Lüdtke DS. Vargas F. Donato RK. Silveira CC. Stefani HA. Zeni G. Tetrahedron Lett.  2003,  44:  1779 
  • 22c Nishibayashi Y. Cho C.-S. Ohe K. Uemura S. J. Organomet. Chem.  1996,  507:  197 
  • 22d Nishibayashi Y. Cho C.-S. Ohe K. Uemura S. J. Organomet. Chem.  1996,  526:  335 
  • 23a Margulis MA. High Energy Chem.  2004,  38:  135 
  • 23b Mason TJ. Chem. Soc. Rev.  1997,  26:  443 
24

General Experimental Procedure for Biaryls 2a-h and 4a-c
A suspension of aryl telluride (1a, 0.135 g, 0.5 mmol), Pd(PPh3)4 (0.45 g, 8 mmol), Na2CO3 (0.106 g, 1 mmol) and Ag2O (0.116 g, 0.5 mmol) in MeOH (3 mL) was irradiated in a water bath of an ultrasonic cleaner for 45 min. Then, the reaction was diluted with EtOAc (30 mL). The organic layer was washed with sat. solution of NH4Cl (2 × 10 mL) and H2O (2 × 10 mL), dried over MgSO4, and concentrated under vacuum. The crude product was purified by flash silica column chromatography using hexane as eluent and characterized as biphenyl 2a. Compound 2a: white solid; mp 70-72 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.13-7.28 (m, 6 H, ArH), 7.45 (d, J = 7.2 Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 122.6, 126.95, 130.11, 141.61. GC-MS (%): 154 (100), 153 (57), 152 (39), 76 (44).
Compound 2b: white solid; mp 146-148 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.38 (d, J = 8.0 Hz, 4 H, ArH), 7.45 (d, J = 8.0 Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 128.00, 129.12, 133.52, 138.20. GC-MS (%): 222 (100), 152 (63), 93 (21), 75 (47).
Compound 2c: white solid; mp 172-174 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.84 (s, 6 H, 2 OMe), 6.95 (d, J = 8.4 Hz, 4 H, ArH), 7.47 (d, J = 8.4 Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 54.89, 113.70, 127.28, 133.04, 158.24. GC-MS (%): 214 (100), 199 (87), 171 (21), 128 (16).
Compound 2d: white solid; mp 122-124 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 2.33 (s, 6 H, 2 Me), 6.96 (d, J = 7.6 Hz, 4 H, ArH), 7.64 (d, J = 7.6 Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 20.93, 127.28, 129.94, 137.88, 138.76. GC-MS (%): 182 (68), 167 (100), 165 (45), 152 (19), 89 (21).
Compound 2e: white solid; mp 160-162 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.41 (d, J = 8.2 Hz, 4 H, ArH), 7.48 (d, J = 8.2 Hz, 4 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 128.23, 129.05, 133.76, 138.45. GC-MS (%): 312 (66), 152 (89), 76 (100).
Compound 2f: colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 2.08 (s, 6 H, 2 Me), 7.02 (t, J = 8.4 Hz, 2 H, ArH), 7.18 (t, J = 8.4 Hz, 4 H, ArH), 7.50 (d, J = 8.0 Hz, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 22.70, 124.74, 127.02, 127.10, 130.62, 132.13, 137.65. GC-MS (%): 182 (77), 167 (100), 166 (22), 165 (48).
Compound 2g: colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 7.38 (t, J = 7.8 Hz, 2 H, ArH), 7.58 (d, J = 7.8 Hz, 2 H, ArH), 7.70 (d, J = 7.8 Hz, 2 H, ArH), 7.80 (s, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 121.39, 122.71, 123.80, 130.34, 131.80, 134.95. GC-MS (%): 290 (100), 271 (24), 201 (28), 152 (19), 89 (21).
Compound 2h: colorless oil. ¹H NMR (300 MHz, CDCl3): δ = 2.02 (s, 6 H, 2 Me), 6.86-7.05 (m, 6 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 22.99, 114.48, 117.77, 118.89, 133.34, 139.93, 160.12, 163.37. GC-MS (%): 218 (92), 203 (100), 201 (52), 183 (60).
Compound 3a: white solid; mp 138-140 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.20 (t, J = 7.8 Hz, 2 H, ArH), 7.36-7.52 (m, 4 H, ArH), 7.66-7.76 (m, 6 H, ArH), 8.18 (d, J = 8.4 Hz, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 122.94, 126.26, 126.78, 127.19, 127.42, 128.02, 128.40, 129.99, 132.09, 134.56. GC-MS (%): 254 (90), 253 (100), 252 (80), 250 (25), 126 (98), 125 (47).
Compound 3b: white solid; mp 180-182 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.44-7.58 (m, 6 H, ArH), 7.66-7.83 (m, 6 H, ArH), 8.00 (s, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 119.37, 125.84, 126.45, 126.57, 127.42, 128.80, 129.15, 129.49, 131.39, 134.06. GC-MS (%): 254 (100), 252 (34), 126 (25). Compound 3c: white solid; mp >250 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 3.85 (s, 6 H, 2 OMe), 7.03 (s, 2 H, ArH), 7.10 (d, J = 9.0 Hz, 2 H, ArH), 7.44 (d, J = 9.0 Hz, 2 H, ArH), 7.50-7.60 (m, 4 H, ArH), 7.85 (s, 2 H, ArH). ¹³C NMR (75.5 MHz, CDCl3): δ = 55.11, 105.56, 116.83, 119.57, 128.18, 128.29, 129.40, 129.45, 129.81, 132.85, 157.69. GC-MS (%): 314 (100), 299 (29), 271 (29), 228 (25), 157 (25).