Horm Metab Res 2020; 52(06): 427-434
DOI: 10.1055/a-1128-0421
Review

The Potential Role of Aldosterone-Producing Cell Clusters in Adrenal Disease

Jung Soo Lim
1   Departments of Molecular, Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
2   Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
,
William E. Rainey
1   Departments of Molecular, Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
› Author Affiliations
Funding: This work was supported by a grant from the National Institutes of Diabetes and Digestive and Kidney Disease (DK106618) to W. E. Rainey.

Abstract

Primary aldosteronism (PA) is the most common cause of secondary hypertension. The hallmark of PA is adrenal production of aldosterone under suppressed renin conditions. PA subtypes include adrenal unilateral and bilateral hyperaldosteronism. Considerable progress has been made in defining the role for somatic gene mutations in aldosterone-producing adenomas (APA) as the primary cause of unilateral PA. This includes the use of next-generation sequencing (NGS) to define recurrent somatic mutations in APA that disrupt calcium signaling, increase aldosterone synthase (CYP11B2) expression, and aldosterone production. The use of CYP11B2 immunohistochemistry on adrenal glands from normal subjects, patients with unilateral and bilateral PA has allowed the identification of CYP11B2-positive cell foci, termed aldosterone-producing cell clusters (APCC). APCC lie beneath the adrenal capsule and like APA, many APCC harbor somatic gene mutations known to increase aldosterone production. These findings suggest that APCC may play a role in pathologic progression of PA. Herein, we provide an update on recent research directed at characterizing APCC and also discuss the unanswered questions related to the role of APCC in PA.



Publication History

Received: 29 December 2019

Accepted: 18 February 2020

Article published online:
30 March 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Monticone S, DʼAscenzo F, Moretti C. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018; 6: 41-50
  • 2 Kayser SC, Dekkers T, Groenewoud HJ. et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: A systematic review and meta-regression analysis. J Clin Endocrinol Metab 2016; 101: 2826-2835
  • 3 Williams B, MacDonald TM, Morant SV. et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: The PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol 2018; 6: 464-475
  • 4 Lim JS, Park S, Park SI. et al. Cardiac dysfunction in association with increased inflammatory markers in primary aldosteronism. Endocrinol Metab (Seoul) 2016; 31: 567-576
  • 5 Zia AA, Kamalov G, Newman KP. et al. From aldosteronism to oxidative stress: The role of excessive intracellular calcium accumulation. Hypertens Res 2010; 33: 1091-1101
  • 6 Herrada AA, Campino C, Amador CA. et al. Aldosterone as a modulator of immunity: Implications in the organ damage. J Hypertens 2011; 29: 1684-1692
  • 7 Yang Y, Reincke M, Williams TA. Prevalence, diagnosis and outcomes of treatment for primary aldosteronism. Best Pract Res Clin Endocrinol Metab. 2019: 101365 . DOI: 10.1016/j.beem.2019.101365
  • 8 Hundemer GL, Curhan GC, Yozamp N. et al. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: A retrospective cohort study. Lancet Diabetes Endocrinol 2018; 6: 51-59
  • 9 Rossi GP. Primary aldosteronism: JACC state-of-the-art review. J Am Coll Cardiol 2019; 74: 2799-2811
  • 10 Rossi GP, Cesari M, Cuspidi C. et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 2013; 62: 62-69
  • 11 Gomez-Sanchez CE, Kuppusamy M, Reincke M. et al. Disordered CYP11B2 expression in primary aldosteronism. Horm Metab Res 2017; 49: 957-962
  • 12 Wu VC, Chueh SC, Chang HW. et al. Bilateral aldosterone-producing adenomas: differentiation from bilateral adrenal hyperplasia. QJM 2008; 101: 13-22
  • 13 Yamazaki Y, Nakamura Y, Omata K. et al. Histopathological classification of cross-sectional image-negative hyperaldosteronism. J Clin Endocrinol Metab 2017; 102: 1182-1192
  • 14 Omura M, Sasano H, Fujiwara T. et al. Unique cases of unilateral hyperaldosteronemia due to multiple adrenocortical micronodules, which can only be detected by selective adrenal venous sampling. Metabolism 2002; 51: 350-355
  • 15 Omata K, Satoh F, Morimoto R. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 2018; 72: 874-880
  • 16 Scholl UI, Goh G, Stolting G. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050-1054
  • 17 Azizan EA, Poulsen H, Tuluc P. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013; 45: 1055-1060
  • 18 Beuschlein F, Boulkroun S, Osswald A. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013; 45: 440-444
  • 19 Choi M, Scholl UI, Yue P. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768-772
  • 20 Fernandes-Rosa FL, Williams TA, Riester A. et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 2014; 64: 354-361
  • 21 Williams TA, Monticone S, Mulatero P. KCNJ5 mutations are the most frequent genetic alteration in primary aldosteronism. Hypertension 2015; 65: 507-509
  • 22 Taguchi R, Yamada M, Nakajima Y. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab 2012; 97: 1311-1319
  • 23 Hong AR, Kim JH, Song YS. et al. Genetics of aldosterone-producing adenoma in Korean patients. PLoS One 2016; 11: e0147590
  • 24 Nanba K, Omata K, Else T. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J Clin Endocrinol Metab 2018; 103: 3869-3876
  • 25 Scholl UI. Unanswered questions in the genetic basis of primary aldosteronism. Horm Metab Res 2017; 49: 963-968
  • 26 Nanba K, Omata K, Gomez-Sanchez CE. et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension 2019; 73: 885-892
  • 27 Dutta RK, Welander J, Brauckhoff M. et al. Complementary somatic mutations of KCNJ5, ATP1A1, and ATP2B3 in sporadic aldosterone producing adrenal adenomas. Endocr Relat Cancer 2014; 21: L1-L4
  • 28 Stindl J, Tauber P, Sterner C. et al. Pathogenesis of adrenal aldosterone-producing adenomas carrying mutations of the Na(+)/K(+)-ATPase. Endocrinology 2015; 156: 4582-4591
  • 29 Wu VC, Wang SM, Chueh SJ. et al. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci Rep 2017; 7: 39121
  • 30 Dutta RK, Arnesen T, Heie A. et al. A somatic mutation in CLCN2 identified in a sporadic aldosterone-producing adenoma. Eur J Endocrinol 2019; 181: K37-K41
  • 31 Scholl UI, Stolting G, Schewe J. et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 2018; 50: 349-354
  • 32 Fernandes-Rosa FL, Daniil G, Orozco IJ. et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet 2018; 50: 355-361
  • 33 Daniil G, Fernandes-Rosa FL, Chemin J. et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 2016; 13: 225-236
  • 34 Scholl UI, Stolting G, Nelson-Williams C. et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: e06315
  • 35 Hattangady NG, Olala LO, Bollag WB. et al. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350: 151-162
  • 36 Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32: 81-151
  • 37 Nishimoto K, Nakagawa K, Li D. et al. Adrenocortical zonation in humans under normal and pathological conditions. J Clin Endocrinol Metab 2010; 95: 2296-2305
  • 38 Gomez-Sanchez CE, Qi X, Velarde-Miranda C. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol Cell Endocrinol 2014; 383: 111-117
  • 39 Nakamura Y, Maekawa T, Felizola SJ. et al. Adrenal CYP11B1/2 expression in primary aldosteronism: Immunohistochemical analysis using novel monoclonal antibodies. Mol Cell Endocrinol 2014; 392: 73-79
  • 40 Ogishima T, Suzuki H, Hata J. et al. Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011 beta in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology 1992; 130: 2971-2977
  • 41 Nanba K, Vaidya A, Williams GH. et al. Age-related autonomous aldosteronism. Circulation 2017; 136: 347-355
  • 42 Rainey WE. Adrenal zonation: clues from 11beta-hydroxylase and aldosterone synthase. Mol Cell Endocrinol 1999; 151: 151-160
  • 43 Shigematsu K, Kawai K, Irie J. et al. Analysis of unilateral adrenal hyperplasia with primary aldosteronism from the aspect of messenger ribonucleic acid expression for steroidogenic enzymes: A comparative study with adrenal cortices adhering to aldosterone-producing adenoma. Endocrinology 2006; 147: 999-1006
  • 44 Enberg U, Volpe C, Hoog A. et al. Postoperative differentiation between unilateral adrenal adenoma and bilateral adrenal hyperplasia in primary aldosteronism by mRNA expression of the gene CYP11B2. Eur J Endocrinol 2004; 151: 73-85
  • 45 Boulkroun S, Samson-Couterie B, Dzib JF. et al. Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 2010; 56: 885-892
  • 46 Nanba K, Tsuiki M, Sawai K. et al. Histopathological diagnosis of primary aldosteronism using CYP11B2 immunohistochemistry. J Clin Endocrinol Metab 2013; 98: 1567-1574
  • 47 Nishimoto K, Seki T, Hayashi Y. et al. Human adrenocortical remodeling leading to aldosterone-producing cell cluster generation. Int J Endocrinol; 2016 7834356.
  • 48 Nishimoto K, Seki T, Kurihara I. et al. Case report: nodule development from subcapsular aldosterone-producing cell clusters causes hyperaldosteronism. J Clin Endocrinol Metab 2016; 101: 6-9
  • 49 Nishimoto K, Tomlins SA, Kuick R. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci USA 2015; 112: E4591-E4599
  • 50 Omata K, Tomlins SA, Rainey WE. Aldosterone-producing cell clusters in normal and pathological states. Horm Metab Res 2017; 49: 951-956
  • 51 Omata K, Anand SK, Hovelson DH. et al. Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in normal adrenals. J Endocr Soc 2017; 1: 787-799
  • 52 Papathomas TG, Sun N, Chortis V. et al. Novel methods in adrenal research: A metabolomics approach. Histochem Cell Biol 2019; 151: 201-216
  • 53 Sugiura Y, Takeo E, Shimma S. et al. Aldosterone and 18-oxocortisol coaccumulation in aldosterone-producing lesions. Hypertension 2018; 72: 1345-1354
  • 54 Sun N, Wu Y, Nanba K. et al. High-resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. Endocrinology 2018; 159: 1511-1524
  • 55 Murakami M, Rhayem Y, Kunzke T. et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight; 2019 4. pii. 130356 DOI: doi: 10.1172/jci.insight.130356
  • 56 Sun N, Meyer LS, Feuchtinger A. et al. Mass spectrometry imaging establishes 2 distinct metabolic phenotypes of aldosterone-producing cell clusters in primary aldosteronism. Hypertension 2020; 75: 634-644
  • 57 Lenders JWM, Williams TA, Reincke M. et al. Diagnosis of endocrine disease: 18-oxocortisol and 18-hydroxycortisol: Is there clinical utility of these steroids?. Eur J Endocrinol 2018; 178: R1-R9
  • 58 Holler F, Heinrich DA, Adolf C. et al. Steroid profiling and immunohistochemistry for subtyping and outcome prediction in primary aldosteronism-a review. Curr Hypertens Rep 2019; 21: 77
  • 59 Eisenhofer G, Dekkers T, Peitzsch M. et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin Chem 2016; 62: 514-524
  • 60 Meyer LS, Wang X, Susnik E. et al. Immunohistopathology and steroid profiles associated with biochemical outcomes after adrenalectomy for unilateral primary aldosteronism. Hypertension 2018; 72: 650-657
  • 61 Nakamura Y, Satoh F, Morimoto R. et al. 18-Oxocortisol measurement in adrenal vein sampling as a biomarker for subclassifying primary aldosteronism. J Clin Endocrinol Metab 2011; 96: E1272-E1278
  • 62 Williams TA, Peitzsch M, Dietz AS. et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 2016; 67: 139-145
  • 63 Azizan EA, Lam BY, Newhouse SJ. et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab 2012; 97: E819-E829
  • 64 Dekkers T, ter Meer M, Lenders JW. et al. Adrenal nodularity and somatic mutations in primary aldosteronism: one node is the culprit?. J Clin Endocrinol Metab 2014; 99: E1341-E1351
  • 65 Monticone S, Castellano I, Versace K. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol Cell Endocrinol 2015; 411: 146-154
  • 66 Ono Y, Yamazaki Y, Omata K. et al. Histological characterization of aldosterone-producing adrenocortical adenomas with different somatic mutations. J Clin Endocrinol Metab. 2019 (PMID: pii)dgz235 DOI: 10.1210/clinem/dgz235
  • 67 Yamazaki Y, Omata K, Tezuka Y. et al. Tumor cell subtypes based on the intracellular hormonal activity in KCNJ5-mutated aldosterone-producing adenoma. Hypertension 2018; 72: 632-640
  • 68 Freel EM, Shakerdi LA, Friel EC. et al. Studies on the origin of circulating 18-hydroxycortisol and 18-oxocortisol in normal human subjects. J Clin Endocrinol Metab 2004; 89: 4628-4633
  • 69 Mulatero P, Curnow KM, Aupetit-Faisant B. et al. Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. J Clin Endocrinol Metab 1998; 83: 3996-4001
  • 70 Takeo E, Sugiura Y, Uemura T. et al. Tandem mass spectrometry imaging reveals distinct accumulation patterns of steroid structural isomers in human adrenal glands. Anal Chem 2019; 91: 8918-8925
  • 71 Nishimoto K, Koga M, Seki T. et al. Immunohistochemistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism. Mol Cell Endocrinol 2017; 441: 124-133
  • 72 Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Somatic and inherited mutations in primary aldosteronism. J Mol Endocrinol 2017; 59: R47-R63
  • 73 Monticone S, Buffolo F, Tetti M. et al. Genetics in endocrinology: The expanding genetic horizon of primary aldosteronism. Eur J Endocrinol 2018; 178: R101-R111
  • 74 Seidel E, Schewe J, Scholl UI. Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51: 131
  • 75 Xie CB, Shaikh LH, Garg S. et al. Regulation of aldosterone secretion by Cav1.3. Sci Rep 2016; 6: 24697
  • 76 Brown JM, Vaidya A. The spectrum of subclinical primary aldosteronism and incident hypertension. Ann Intern Med 2018; 168: 755-756
  • 77 Brown JM, Robinson-Cohen C, Luque-Fernandez MA. et al. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann Intern Med 2017; 167: 630-641