Skip to main content
  • Original Article
  • Published:

Variables influencing cork thickness in Spanish cork oak forests: A modelling approach

Variables influençant l’épaisseur du liège dans les forêts de chênes-lièges espagnoles: une proposition de modélisation

Abstract

In this study, we evaluate the influence of different variables on cork thickness in cork oak forests. For this purpose, first we fitted a multilevel linear mixed model for predicting average cork thickness, and then identified the explanatory covariates by studying their possible correlation with random effects. The model for predicting average cork thickness is described as a stochastic process, where a fixed, deterministic model, explains the mean value, while unexplained residual variability is described and modelled by including random parameters acting at plot, tree, plot × cork harvest and residual within-tree levels, considering the spatial covariance structure between trees within the same plot. Calibration is carried out by using the best linear unbiased predictor (BLUP) theory. Different alternatives were tested to determine the optimum subsample size which was found to be appropriate at four trees. Finally, the model was applied and its performance in the estimation of cork production was tested and compared with the cork weight model traditionally used in Spain.

Résumé

Dans cette étude, nous avons mesuré l’influence de diverses variables sur l’épaisseur du liège des forêts de chênes-lièges. Dans ce but nous avons d’abord appliqué un modèle linéaire mixte pour prédire l’épaisseur moyenne du liège, et on a alors identifié les co-variables explicatives pour expliquer leur possible corrélation avec des effets aléatoire. Le modèle prédisant l’épaisseur moyenne du liège peut être décrit comme un processus stochastique où un modèle fixe et déterministe explique la valeur moyenne, tandis qu’une variabilité résiduelle inexpliquée est décrite et modélisée par l’inclusion de paramètres aléatoires relevant de la parcelle, de l’arbre, de la récolte de liège par parcelle et aux niveaux résiduels des arbres prenant en compte la covariance de la structure spatiale entre les arbres d’une même parcelle. Le calibrage a été réalisé en employant la théorie BLUP (Best linear unbiased predictor ou Meilleur prédicteur linéaire non biaisé) On a essayé différentes options pour trouver la dimension optimale de l’échantillon et on a trouvé qu’il était opportun d’utiliser quatre arbres par parcelles. Finalement le modèle a été appliqué pour calculer la production de liège et a été comparé avec le poids de liège obtenu avec le modèle employé d’habitude en Espagne.

References

  1. Bravo-Oviedo A., del Río M., Montero G., Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain, For. Ecol. Manage. 201 (2004) 187–197.

    Article  Google Scholar 

  2. Cabanettes A., Rapp M., Biomasse, minéralomasse et productivité d’un écosystème à pins pignons (Pinus pinea L.) du littoral méditerranéen. III. Croissance, Acta Oecol. Plant. 2 (1981) 121–136.

    Google Scholar 

  3. Calama R., Modelo interregional de selvicultura para Pinus pinea L. Aproximación mediante funciones con componentes aleatorio, Ph.D. thesis, Universidad Politécnica de Madrid, 2004.

  4. Calama R., Montero G., Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach, Silva Fenn. 39 (2005) 37–54.

    Google Scholar 

  5. Cañellas I., Bachiller A., Montero G., Influencia de la densidad de la masa en la production de corcho en alcornocales adehesados de Extremadura, Actas del Congreso de Ordenación y Gestión Sostenible de Montes, Santiago de Compostela, 4–9 de Octubre de 1999, Ponencias y Resumenes de Comunicaciones, Tomo I, 2000, pp. 449–456.

  6. Caritat A., Gurierrez E., Molinas M., Influence of weather on corkring width, Tree physiol. 20 (2000), 893–900.

    PubMed  CAS  Google Scholar 

  7. Corona P., Dettori S., Filigheddu M.R., Maetzke F., Scotti R., Site quality evaluation by classification tree: an application to cork quality in Sardinia, Eur. J. For. Res. 124 (2005) 37–46.

    Google Scholar 

  8. Costa A., Pereira H., Oliveira A., Variability of radial growth in cork oak mature trees under cork production, For. Ecol. Manage. 175 (2003) 239–246.

    Article  Google Scholar 

  9. Costa A., Pereira H., Oliveira A., Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle, Ann. For. Sci. 59 (2002) 429–437.

    Article  Google Scholar 

  10. De Benito Ontañón N., Cork oak stands in Cortes de la Frontera, Proceedings of the IUFRO Meeting Mediterranean Silviculture with emphasis in Quercus suber, Pinus pinea and Eucalyptus sp., 2000.

  11. Falcao A.O., Borges J.G., Designing decision support tools for Mediterranean forest ecosystems management: case study, Ann. For. Sci. 62 (2005) 751–760.

    Article  Google Scholar 

  12. FAO, World Reference Base for Soil Resources, World Soil Resources Reports, 84, Rome, 1998.

  13. Fernández L., González-Prieto A.J., Cabaneiro A., C-isotopic fingerprints of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain, Rapid Commun. Mass Spectrom. 19 (2005) 3199–3206.

    Article  PubMed  Google Scholar 

  14. Ferreira A., Lopes F., Pereira H., Caractérisation de la croissance et de la qualité du liège dans une région de production, Ann. For. Sci. 57 (2000) 187–193.

    Article  Google Scholar 

  15. Figueroa P., Alcornocales e Industria Corchera, Conferencia sobre alcornocales, E.T.S.I. Montes, Madrid, 1957.

    Google Scholar 

  16. Fox J.C., Ades P.K., Bi H., Stochastic structure and individual-tree growth models, For. Ecol. Manage.154 (2001) 261–276.

    Article  Google Scholar 

  17. Goldstein H., Multilevel Statistical Models, 2nd. ed., Arnold Publishers, London, 1995.

    Google Scholar 

  18. Gonzalez Adrados J.R., González Herández R., Calvo Haro R., La predicción del calibre de corcho al final del turno y su aplicación al muestreo de la productión, Investig. Agrar., Sist. Recur. For. 9 (2000) 363–373.

    Google Scholar 

  19. González-Prieto S.F., Villar M.C., Soil organic N dynamics and stand quality in Pinus radiata pinewoods of the temperate humid region, Soil Biol. Biochem. 35 (2003) 1395–1404.

    Article  Google Scholar 

  20. Gregoire T.G., Generalized error structure for forestry yield models, For. Sci. 33 (1987) 423–444.

    Google Scholar 

  21. Gourlay I.D., Pereira H., The effect of bark stripping on wood production in cork-oak (Quercus suber L.) and problems of growth ring definition, in: Pereira H. (Ed.), Proceedings of the European Conference on Cork Oak and Cork, Centro de Estudos Florestais, Lisboa, 1998, pp. 99–107.

    Google Scholar 

  22. Henderson C.R., Kempthorne O., Searle S.R., Von Krosing C.N., Estimation of environmental and genetic trends from records subject to culling, Biometrics 15 (1959) 192–218.

    Article  Google Scholar 

  23. Ihalainen M., Salo K., Pukkala T., Empirical prediction models for Vaccinium myrtillus and V. vitis-idaea berry yields in North Karelia, Finland, Silva Fenn. 37 (2003) 95–108.

    Google Scholar 

  24. Koechlin B., Rambal S., Debussche M., Rôle des arbres, pionniers sur la teneur en eau du sol en surface de friches de la región méditerranéenne, Acta Oecol. 7 (1986) 177–190.

    Google Scholar 

  25. Kyrikiadis P.C., Journel A.G., Geostatistical space-time models: a review, Math. Geol. 31 (1999) 651–684.

    Article  Google Scholar 

  26. Landsac A.R., Zaballos J.P., Martin A., Seasonal water potential changes and proline accumulation in Mediterranean shrubland species, Vegetatio, 113 (1994) 141–154.

    Google Scholar 

  27. Lappi J., Bailey R.L., A height prediction model with random stands and tree parameters: an alternative to traditional site index methods, For. Sci. 34 (1988) 907–927.

    Google Scholar 

  28. Littell R.C., Milliken A.G., Stroup W.W., Wolfinger R.D., SAS system for mixed models, SAS Institute Inc., Cary, NC, 1996, 633 p.

    Google Scholar 

  29. Montero G., Modelos para cuantificar la producción de corcho en alcornocales (Quercus suber L.) en función de la calidad de estación y los tratamientos selvícolas, Ph.D. thesis, INIA, Madrid, 1987, 277 p.

    Google Scholar 

  30. Montero G., Vallejo R., Variación del calibre de corcho medido a distintas alturas, Investig. Agrar., Sist. Recur. For. 2 (1992) 181–188.

    Google Scholar 

  31. Montero G., Cañellas I., Manual de forestación del alcornoque (Quercus suber L.), MAPA-INIA, 1999.

  32. Montero G., Cañellas I., Selvicultura de los alcornocales en España, Silva Lusitana 11 (2003) 1–19.

    Google Scholar 

  33. Montero G., Cañellas I., Ruiz-Peinado R., Growth and yield models for Pinus halepensis Mill., Investig. Agrar. Sis. Recur. For. 10 (2001) 179–202.

    Google Scholar 

  34. Montes F., Sánchez M., Del Rio M., Cañellas I., Using historic management records to characterize the effects of management on the structural diversity of forests, For. Ecol. Manage. 207 (2005) 279–293.

    Article  Google Scholar 

  35. Montoya J.M., Los alcornocales, S.E.A., Madrid, 1988.

    Google Scholar 

  36. Natural Cork Quality Council Industry statistics, Natural Cork Quality Council, Sebastopol, CA, USA, 1999, Online at http://corkqc.com.

  37. Oliveira G., Martins-Loução M.A., Correira O., The relative importance of cork harvesting and climate fore stem radial growth of Quercus suber L., Ann. For. Sci. 59 (2002) 439–443.

    Article  Google Scholar 

  38. Sánchez-González M., Tomé M., Montero G., Modelling height and diameter growth of dominant cork oak trees in Spain, Ann. For. Sci. 62 (2005) 1–11.

    Article  Google Scholar 

  39. Sánchez-Palomares O., Sánchez Serrano F., Carretero Carrero M.P., Modelos y cartografía de estimaciones climáticas termopluviométricas para la Espana peninsular INIA, col. Fuera de Serie, Madrid, 1999.

  40. Searle S.L., Casella G., McCulloch C.E., Variance components, John Wiley & sons, Inc, New York, 1992, 501 p.

    Book  Google Scholar 

  41. Singer J.D., Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models, J. Educational Behavioural Statistics 23, (1998) 323–355.

    Google Scholar 

  42. Tomé M., Coelho M.B., Almeida A., Lopes F., O modelo SUBER. Estrutura e equações utilizadas, Relateriós técnicocientíficos do GIMREF n 2/2001, Centro de Estudos Florestais, Institute Superior de Agronomia, Lisboa, 2001.

    Google Scholar 

  43. Torres E., Montero G., Suarez M.A., Relatión entre la densidad de la mas y la productión de corcho en montes alcornocales del sur de España, in: Puertas F., Rivas M. (Eds), II Congreso Forestal National, Tomo IV, 1997, pp. 529–534.

  44. Vazquez F.J., Modelos preditivos de produçao de cortiça e detecçao précoce da qualidade, Ph.D. thesis, ISA, Lisboa, 2002

    Google Scholar 

  45. Vieira Natividade J., Subericultura, D.G.F.P., Lisboa, 1950.

    Google Scholar 

  46. Vonesh E.F., Chinchilli V.M., Linear and nonlinear models for the analysis of repeated measurements, Marcel Dekker, Inc., New York, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariola Sánchez-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-González, M., Calama, R., Cañellas, I. et al. Variables influencing cork thickness in Spanish cork oak forests: A modelling approach. Ann. For. Sci. 64, 301–312 (2007). https://doi.org/10.1051/forest:2007007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007007