Skip to main content
  • Original Article
  • Published:

A comparative analysis of foliar chemical composition and leaf construction costs of beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings along a light gradient

Abstract

  • • Construction cost (g glucose g−1), chemical composition and morphology of leaves of beech (Fagus sylvatica L.) and two co-occurring valuable broadleaved species (sycamore maple — Acer pseudoplatanus L. — and ash — Fraxinus excelsior L.) were investigated along a horizontal light gradient (3–60% of above canopy radiation) and from top to bottom within the crowns in a fairly even-aged mixed-species thicket established by natural regeneration beneath a patchy shelterwood canopy.

  • • Construction cost and carbon concentration increased with irradiance in ash and sycamore maple and were independent of irradiance in beech. Leaf traits expressed on an area basis, like construction cost, nitrogen content and leaf mass (LMA) increased significantly with irradiance in all three species and decreased from top to bottom within crowns.

  • • The shade tolerant beech invested more glucose to produce a unit foliar biomass, but less to build a unit foliar area due to lower LMA. Thereby beech was able to display a greater total leaf area, what at least in parts counterbalanced the lower values of N a as compared to ash and sycamore maple.

References

  • Abrams M.D. and Kubiske M.E., 1990. Leaf structural characteristic of 31 hardwood and conifer tree species in Central Wisconsin: influence of light regime and shade tolerance rank. For. Ecol. Manage. 31: 245–253.

    Article  Google Scholar 

  • Barthod S. and Epron D., 2005. Variations of construction costs associated to leaf area renewal in saplings of two co-occurring temperate tree species (Acer platanoides L. and Fraxinus excelsior L.) along a light gradient. Ann. For. Sci. 62: 545–551.

    Article  Google Scholar 

  • Ellsworth D.S. and Reich P.B., 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169–178.

    Article  Google Scholar 

  • Frak E., Le Roux X., Millard P., Dreyer E., Jaouen G., Saint-Joanis B. and Wendler R., 2001. Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant, Cell Environ. 24: 1279–1288.

    Article  CAS  Google Scholar 

  • Gardiner E.S, Löf M., O’Brien J.J., Stanturf J.A., Madsen P., 2009. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies. For. Ecol. Manage. 258: 868–878.

    Article  Google Scholar 

  • Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Phys. 15: 63–92.

    Article  Google Scholar 

  • Hallik L., Niinemets Ü. and Wright I.J., 2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytol. 184: 257–274.

    Article  PubMed  CAS  Google Scholar 

  • Kimmins, J.P., 1997. Forest ecology — a foundation for sustainable management. Prentice Hall, Upper Saddle River/New Jersey, 596 p.

    Google Scholar 

  • Kitajima K., 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419–428.

    Article  Google Scholar 

  • Kobe, R.K., Pacala, S.W., Silander, J.A., Jr., Canham, C.D., 1995. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5: 517–532.

    Article  Google Scholar 

  • Kull O. and Niinemets Ü., 1993. Variation in leaf. morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiol. 12: 311–318.

    PubMed  Google Scholar 

  • Le Roux X., Walcroft A.S., Daudet F.A., Sinoquet H., Chaves M.M., Rodriques A. and Osorio, L., 2001. Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol. 21: 377–386.

    PubMed  Google Scholar 

  • LI-COR, Inc., 1987. Li-3100 Area Meter. Instruction Manual, Lincoln, Nebraska.

  • Niinemets Ü., 1995. Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: adaptation to a vertical light gradient. ActaOecol. 16: 525–541.

    Google Scholar 

  • Niinemets Ü., 1997. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct. Ecol. 11: 518–531.

    Article  Google Scholar 

  • Niinemets Ü., 1999. Energy requirement for foliage formation is not constant along canopy light gradients in temperate deciduous trees. New Phytol. 144: 459–470.

    Article  Google Scholar 

  • Niinemets Ü. and Kull O., 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol. 18: 467–479.

    PubMed  Google Scholar 

  • Niinemets Ü. and Tenhunen J.D., 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20: 845–866.

    Article  Google Scholar 

  • Petritan A.M., Lüpke B.v., and Petritan I.C., 2007. Effects of shade on growth and mortality of sycamore maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80: 397–412.

    Article  Google Scholar 

  • Petritan A.M., Lüpke B.v., and Petritan I.C., 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.). Eur. J. For. Res. 128: 61–74.

    Google Scholar 

  • Poorter H. and Bergkotte M., 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15: 221–229.

    Article  CAS  Google Scholar 

  • Poorter H. and Villar R., 1997. The fate of acquired carbon in plants: chemical composition and costruction costs. In: Bazzaz F.A. and Grac J., (Eds.), Plant resource allocation, Academic Press, New York, pp. 39–72.

    Chapter  Google Scholar 

  • Poorter H., Pepin S., Rijkers T., DeJong Y., Evans J.R. and Körner C., 2006. Construction costs, chemical composition and payback time of highand low-irradiance leaves. J. Exp. Bot. 57: 355–371.

    Article  PubMed  CAS  Google Scholar 

  • Regents Instruments Inc. Sainte-Foy, Québec, 2003. WinScanopy for hemispherical image analysis. www.regent-instruments.com.

  • Röhrig E, Bartsch N, Lüpke B.v., 2006. Waldbau auf ökologischer Grundlage. Eugen Ulmer (zugleich UTB 8310), Stuttgart, 480 p.

  • Rosati A., Esparza G., DeJong T.M. and Pearcy R.W., 1999. Influence of canopy light environment and nitrogen availability on leaf photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiol. 19: 173–180.

    PubMed  Google Scholar 

  • Sims D.A. and Pearcy R.W., 1994. Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance — I. Carbon balance and allocation at different daily photon flux densities. Plant Cell Environ. 17: 881–887.

    Article  CAS  Google Scholar 

  • StatSoft, Inc. 2005 STATISTICA für Windows [Software-System für Datenanalyse] Version 7.1. http://www.statsoft.com.

  • Valladares F. and Niinemets Ü., 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences Annu. Rev. Ecol. Evol. Syst. 39: 237–57.

    Article  Google Scholar 

  • Vertregt N. and Penning de Vries F.W.T., 1987. A rapid method for determining the efficiency of biosynthesis of plant biomass. J. Theor. Biol. 128: 109–119.

    Article  Google Scholar 

  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C. et al., 2004. The world-wide leaf economics spectrum. Nature 428: 821–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Any Mary Petritan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petritan, A.M., von Lüpke, B. & Petritan, I.C. A comparative analysis of foliar chemical composition and leaf construction costs of beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings along a light gradient. Ann. For. Sci. 67, 610 (2010). https://doi.org/10.1051/forest/2010023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010023

Keywords