Skip to main content
  • Original Article
  • Published:

Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits

Epicormiques chez le chêne sessile âgé de 13 ans : un faible effet provenance et un effet légèrement plus fort du nombre de branches et d’unités de croissance

Abstract

  • • The provenance effect on epicormics is poorly documented and restricted to epicormic shoots. Our objective was to characterize the relationship between epicormics and provenance on 13-year-old Quercus petraea trees, taking into account their growth traits.

  • • On the growth units (GU) studied, epicormics were essentially isolated buds (95%) and they were mainly located at branch bases, secondarily on GU limits and marginally on lateral position. Provenance effect was very small on the number of epicormics and slightly larger on the number of branches and GU limits. On the contrary, the growth situation-independently from provenance-proved to have a larger effect on the 2 latter growth traits.

  • • Altogether, these results clearly show the predominant effect of morphological traits and thus of ontogeny. This opens important research perspectives: how growth conditions and genetics (at progeny and individual levels) influence height growth, setting and fate of axillary buds on the one hand and fate of epicormic buds inserted directly on the stem, or at branch bases on the other hand.

Résumé

  • • L’effet provenance sur les épicormiques est peu documenté et concerne exclusivement les gourmands. Notre objectif était de caractériser l’effet de la provenance sur les épicormiques présents sur des chênes sessiles âgés de 13 ans, décrits par des marqueurs de croissance.

  • • Sur les unités de croissance (UC) décrites, les épicormiques sont essentiellement des bourgeons isolés (95 %), localisés à la base de branche, puis en limite d’UC et enfin en position latérale sur le tronc. L’effet provenance s’est avéré très faible sur le nombre d’épicormiques et légèrement plus fort sur le nombre de branches et d’UC développées. À l’inverse, un effet de la situation de croissance a été noté sur les deux derniers paramètres, et ceci indépendamment de la provenance.

  • • L’ensemble des données obtenues montre une prédominance de l’effet des marqueurs morphologiques de l’arbre sur les épicormiques, et donc de l’ontogénèse. Ceci ouvre d’intéressantes perspectives de recherche : quels sont les effets des conditions de croissance et de la génétique (au niveau descendance et individuel) sur la croissance en hauteur, la mise en place et le devenir des bourgeons axillaires d’une part, et du devenir des bourgeons épicormiques, situés directement sur la tige ou en base de branches séquentielles d’autre part.

References

  • Arora R., Rowland L.J., and Tanino K., 2003. Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38: 911–921.

    Google Scholar 

  • Barthélémy D. and Caraglio Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99: 375–407.

    Article  PubMed  Google Scholar 

  • Chaar H. and Colin F., 1999. Impact of late frost on height growth in young sessile oak regenerations. Ann. Sci. For. 56: 417–429.

    Google Scholar 

  • Chaar H., Colin F., and Leborgne G., 1997. Artificial defoliation, decapitation of the terminal bud, and removal of the apical tip of the shoot in sessile oak seedlings and consequences on subsequent growth. Can. J. For. Res. 27: 1614–1621.

    Article  Google Scholar 

  • Champagnat P., 1983. Quelques réflexions sur la dormance des bourgeons des végétaux ligneux. Physiol. Veg. 21: 607–618.

    Google Scholar 

  • Church T.W. and Godman R.M., 1966. The Formation and development of dormant buds in sugar maple. For. Sci. 12: 301–306.

    Google Scholar 

  • Colin F., Robert N., Druelle J.L., and Fontaine F., 2008. Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. An. For. Sci. 65: 508.

    Article  Google Scholar 

  • Collet C., Colin F., and Bernier F., 1997. Height growth, shoot elongation and branch development of young Quercus petraea grown under different levels of resource availability. Ann. Sci. For. 54: 65–81.

    Article  Google Scholar 

  • Fink S., 1980. Anatomical studies on the occurrence of shoot and root primordia in the stem region of broadleaved and coniferous trees. 1. Proventitious primordia. Allg. Forst. Jagdz. 151: 160–180.

    Google Scholar 

  • Fontaine F., Kiefer E., Clément C., Burrus M., and Druelle J.L., 1999. Ontogeny of proventitious epicormic buds in Quercus petraea. II. From 6 to 40 y of the tree’s life. Trees-Struct. Funct. 14: 83–90.

    Google Scholar 

  • Fontaine F., Colin F., Jarret P., and Druelle J.L., 2001. Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann. Sci. For. 58: 583–592.

    Article  Google Scholar 

  • Fontaine F., Mothe F., Colin F., and Duplat P., 2004. Structural relationships between the epicormic formations on trunk surface and defects induced in the wood of Quercus petraea. Trees-Struct. Funct. 18: 295–306.

    Article  Google Scholar 

  • Harmer R., 1989. The effect of Mineral Nutrients on Growth, Flushing, Apical Dominance and Branching in Quercus petraea (Matt.) Liebl. Forestry 62: 383–395.

    Article  Google Scholar 

  • Harmer R., 2000. Differences in growth and branch production by young plants of two provenances of Quercus robur L. Forestry 73: 271–281.

    Article  Google Scholar 

  • Hartl D. and Clark A., 1997. Principles of Population Genetics. Sinauer Associates Inc., 542 p.

  • Henderson C.R., 1953. Estimation of variance and covariance components. Biometrics 9: 226–252.

    Article  Google Scholar 

  • Heuret P., Barthélémy D., Nicolini E., and Atger C., 2000. Analysis of height growth factors and trunk development in the sessile oak, Quercus petraea (Matt.) Liebl. (Fagaceae) in dynamic sylviculture. Can. J. Bot. 78: 361–373.

    Google Scholar 

  • Heuret P., Guédon Y., Guérard N., and Barthélémy D., 2003. Analysing branching pattern in plantations of young red oak trees (Quercus rubra L., Fagaceae). Ann. Bot. 91: 479–492.

    Article  PubMed  Google Scholar 

  • Jarret P., 2004. Chênaie atlantique: Guide des sylvicultures. ONF Ed., Lavoisier, Paris, 335 p.

    Google Scholar 

  • Jemission G.M. and Schumacher F.X., 1948. Epicormic branching in old-growth Appalachian hardwoods. J. For. 46: 252–254.

    Google Scholar 

  • Jensen J.S., 1993. Variation of growth in Danish provenance trials with oak (Quercus robur L and Quercus petraea Mattuschka Liebl). Ann. Sci. For. 50 (suppl 1): 203–207.

    Article  Google Scholar 

  • Jensen J.S., 2000. Provenance variation in phenotypic traits in Quercus robur and Quercus petraea in Danish provenance trials. Scand. J. For. Res. 15: 297–308.

    Article  Google Scholar 

  • Jensen J.S., Wellendorf H., Jager K., De Vries S.M.G.., and Jensen V., 1997. Analysis of 17-year old dutch open-pollinated progeny trial with Quercus robur (L.). For. Genet. 4: 139–147.

    Google Scholar 

  • Lang G.A., 1987. Dormancy: a new universal terminology. HorstScience 22: 817–820.

    Google Scholar 

  • Lavarenne-Allary S., 1965. Recherche sur la croissance des bourgeons de chênes et de quelques autres espèces ligneuses. Ann. Sci. For. 22: 7–203.

    Article  Google Scholar 

  • López-Fanjul C., Fernández A., and Toro M.A., 2007. The Effect of dominance on the use of the QST —FST contrast to detect natural selection on quantitative traits. Genetics 176: 725–727.

    Article  PubMed  Google Scholar 

  • Mariette S., Cottrell J., Csaikl U.M., Goikoechea P., Konig A., Lowe A.J., Van Dam B.C., Barreneche T., Bodenes C., Streiff R., Burg K., Groppe K., Munro R.C., Tabbener H., and Kremer A., 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Quercus petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genetica 51: 72–79.

    Google Scholar 

  • Mauget J.C., 1984. Comportement comparé des bourgeons de l’année et des bourgeons latents chez le noyer (Juglans regia L., cv. “Franquette”). Conséquences sur la morphogenèse de l’arbre. Agronomie 4: 507–515.

    Article  Google Scholar 

  • O’Hara K.L. and Valappil N.I., 2000. Epicormic sprouting of pruned western larch. Can. J. For. Res. 30: 324–328.

    Article  Google Scholar 

  • Ricaud S., Alaoui-Sossé B., Crabbé J., and Barnola P., 1995. Dormance et croissance des bourgeons du platane hybride (Platanus acertifolia) en milieu urbain. Can. J. Bot. 73: 130–140.

    Article  Google Scholar 

  • Remphrey W.R. and Davidson C.G., 1992. Spatiotemporal distribution of epicormic shoots and their architecture in branches of Fraxinus pennsylvatica. Can. J. For. Res. 22: 336–340.

    Article  Google Scholar 

  • Scotti-Saintagne C., Bodenes C., Barreneche T., Bertocchi E., Plomion C., and Kremer A., 2004. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 109: 1648–1659.

    Article  PubMed  CAS  Google Scholar 

  • Segura V., Durel C.E., and Costes E., 2009. Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet. Genomes 5: 165–179

    Article  Google Scholar 

  • Shepherd M., Cross M., Dieters M.J., and Henry R., 2002. Branch architecture QTL for Pinus elliotii var. eliottii × Pinus cariaea var. hondurensis hybrids. Ann. For. Sci. 59: 617–625

    Article  Google Scholar 

  • Smith H.C., 1966. Epicormic branching on eight species of Appalachian hardwoods. USDA Forest Service Note NE-53: 1–4.

  • Spitze K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135: 367–374.

    PubMed  CAS  Google Scholar 

  • Stone E.L. and Stone M.H., 1943. “Dormant” versus “adventitious” buds. Science 98: 24–33.

    Article  Google Scholar 

  • Ward W.W., 1966. Epicormic branching of black and white oaks. For. Sci. 12: 290–297.

    Google Scholar 

  • Wignall T.A. and Browning G., 1988. The effects of stand thinning and artificial shading on epicormic bud emergence in pedunculate oak (Quercus robur L.). Forestry 61: 46–59.

    Article  Google Scholar 

  • Wignall T.A., Browning G., and Mackenzie K.A.D., 1987. The physiology of epicormic bud emergence in pedonculate oak (Quercus robur L.). Response to partial notch girdling in thinned and unthinned stands. Forestry 60: 45–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Colin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, F., Ducousso, A. & Fontaine, F. Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits. Ann. For. Sci. 67, 312 (2010). https://doi.org/10.1051/forest/2009118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009118

Keywords

Mots-clés