Skip to main content
  • Original Article
  • Published:

Diversity of woody plant seedling banks under closed canopy in fragmented coppice forests

Une banque de semis diversifiée sous canopée fermée dans des taillis fragmentés

Abstract

  • • Seedling banks of woody species established under closed canopy have received little consideration in coppice forests despite their potential importance for natural regeneration.

  • • This study aimed to evaluate the influences of canopy composition and of distance from the nearest forest edge on the abundance and species richness of the seedling bank, for different ecological groups of seedlings (age, successional status and dispersal vector) in 68 fragmented coppice stands.

  • • Seedlings were found in 67 stands, with 19 species identified. Eight species present as older seedlings were lacking as first-year old seedlings, suggesting temporal variability of species recruitment. Seedling abundances of species with low-dispersal ability were positively correlated with the abundances of their conspecific adults. Seedling abundance of mid-successional species was negatively correlated with the distance from the nearest forest edge, while mid-to-late successional species seedling abundance presented the opposite pattern.

  • • Our results showed that woody species were able to establish frequently under closed canopy in these fragmented coppices and form a seedling bank which may be used for natural regeneration.

Résumé

  • • Peu d’études ont porté sur les banques de semis de ligneux installés sous canopée fermée dans des taillis, malgré leur importance potentielle pour la régénération naturelle.

  • • Nous avons exploré le lien entre l’abondance et la richesse des semis de ligneux, et la composition de la canopée et la distance à la lisière la plus proche, dans 68 peuplements gérés en taillis. Les semis ont été regroupés en fonction de leur âge, et les espèces en fonction de leur mode de dispersion et de leur place a priori dans la succession forestière.

  • • Nous avons trouvé des semis dans 67 peuplements, appartenant à 19 espèces distinctes. Huit espèces présentes sous forme de semis plus âgés, manquent sous forme de semis de l’année, suggérant une variabilité temporelle du recrutement des espèces. L’abondance des semis des espèces à dispersion limitée est corrélée à celle des adultes. L’abondance des semis des espèces post-pionnières nomades, capable de s’installer en pleine lumière, est négativement corrélée à la distance à la lisière, tandis que celle des semis des espèces post-pionnières, plus sciaphiles présente le patron opposé.

  • • Nos résultats indiquent que plusieurs espèces de plantes ligneuses sont capables de s’établir fréquemment sous canopée fermée dans ces taillis fragmentés, formant ainsi une banque de semis potentiellement utilisable pour la régénération naturelle de ces forêts.

References

  • Balent G. and Courtiade B., 1992. Modelling bird communities/landscape patterns relationships in a rural area of South-Western France. Landsc. Ecol. 6: 195–211.

    Article  Google Scholar 

  • Cadenasso M.L., Pickett S.T.A., Weathers K.C., and Jones C.G., 2003. A framework for a theory of ecological boundaries. Bioscience 53: 750–758.

    Article  Google Scholar 

  • Clark J.S., Macklin E., and Wood L., 1998. Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol. Monogr. 68: 213–235.

    Article  Google Scholar 

  • Clark J.S., Beckage B., Camill P., Cleveland B., Hille Ris Lambers J., Lichter J., McLachlan J., Mohan J., and Wyckoff P., 1999. Interpreting recruitment limitation in forests. Am. J. Bot. 86: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Deconchat M. and Balent G., 2001. Effets des perturbations du sol et de la mise en lumière occasionnées par l’exploitation forestière sur la flore à une échelle fine. Ann. For. Sci. 58: 315–328.

    Article  Google Scholar 

  • De Warnaffe G.D., Deconchat M., Ladet S., and Balent G., 2006. Variability of cutting regimes in small private woodlots of southwestern France. Ann. For. Sci. 63: 915–927.

    Article  Google Scholar 

  • Duchaufour P., 1983. Pédologie. Tome I: Pédogénèse et classification, 2e éd., Masson, Paris, 491 p.

    Google Scholar 

  • Espeita J.M., Riba M., and Retana J., 1995. Patterns of seedling recruitment in west-mediterranean Quercus ilex forests influenced by canopy development. J. Veg. Sci. 6: 465–472.

    Article  Google Scholar 

  • Frey B.R., Ashton M.S., McKenna J.J., Ellumand D., and Kinkral A., 2007. Topographic and temporal patterns in tree seedling establishment, growth, and survival among masting species of Southern New England mixed-deciduous forests. For. Ecol. Manage. 242: 54–63.

    Article  Google Scholar 

  • Gehlhausen S.M., Schwartz M.W., and Augspurger C.K., 2000. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 147: 21–35.

    Article  Google Scholar 

  • Goldblum D. and Beatty S.W., 1999. Influence of an old field/forest edge on a north-eastern United States deciduous forest understory community. J. Torrey Bot. Soc. 126: 335–343.

    Article  Google Scholar 

  • Gomez J.M., 2003. Spatial patterns in long-distance of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26: 573–584.

    Article  Google Scholar 

  • Gracia M., Retana J., and Pico F.X., 2001. Seedling bank dynamics in managed holm oak (Quercus ilex) forests. Ann. For. Sci. 58: 843–852.

    Article  Google Scholar 

  • Grashof-Bokdam C., 1997. Forest species in an agricultural landscape in the Netherlands: effects of habitat fragmentation. J. Veg. Sci. 8: 21–28.

    Article  Google Scholar 

  • Grime J.P., 1979. Plant strategies and vegetation processes, John Wiley & Sons, New York, 222 p.

    Google Scholar 

  • Harmer R. and Morgan G., 2007. Development of Quercus robur advance regeneration following canopy reduction in an oak woodland. Forestry 80: 137–149.

    Article  Google Scholar 

  • Harmer R., Kerr G., and Boswell R., 1997. Characteristics of lowland broadleaved woodland being restocked by natural regeneration. Forestry 70: 199–210.

    Article  Google Scholar 

  • Harper K.A., MacDonald S.E., Burton P.J., Chen J., Brosofske K.D., Saunders S.C., Euskirchen E.S., Roberts D., Jaiteh M.S., and Esseen P.A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19: 768–782.

    Article  Google Scholar 

  • Hewitt N. and Kellman M., 2002. Tree seed dispersal among forests fragments: II. Dispersal abilities and biogeographical controls. J. Biogeogr. 29: 351–363.

    Article  Google Scholar 

  • Hewitt N. and Kellman M., 2004. Factors influencing tree colonization in fragmented forests: an experimental study of introduced seeds and seedlings. For. Ecol. Manage. 191: 39–49.

    Article  Google Scholar 

  • Hille Ris Lambers J. and Clark J.S., 2003. Effects of dispersal, shrubs, and density-dependent mortality on seed and seedling distributions in temperate forests. Can. J. For. Res. 33: 783–795.

    Article  Google Scholar 

  • Hodgson J.G. and Grime J.P., 1990. The role of dispersal mechanisms, regenerative strategies and seed banks in the vegetation dynamics of the British landscape. In: Bunce R.G.H. and Howard D.C. (Eds.), Species dispersal in agricultural habitats, Belhaven Press, London, pp. 65–97.

    Google Scholar 

  • Houle G., 1994. Spatiotemporal patterns in the components of regeneration of four sympatric tree species — Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. J. Ecol. 82: 39–53.

    Article  Google Scholar 

  • Jentsch A., Beierkuhnlein C., and White P.S., 2002. Scale, the dynamic stability of forest ecosystems, and the persistence of biodiversity. Silva Fenn. 36: 393–400.

    Google Scholar 

  • Johnson W.C., 1988. Estimating the dispersability of Acer, Fraxinus and Tilia in fragmented landscapes from patterns of seedling establishment. Landsc. Ecol. 1: 175–189.

    Article  Google Scholar 

  • Laurance W.F. and Yensen E., 1991. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 55: 77–92.

    Article  Google Scholar 

  • Le Duc M.G. and Havill D.C., 1998. Competition between Quercus petraea and Carpinus betulus in an ancient wood in England: seedling survivorship. J. Veg. Sci. 9: 873–880.

    Article  Google Scholar 

  • Marchand P. and Houle G., 2006. Spatial patterns of plant species richness along a forest edge: What are their determinants?, For. Ecol. Manage. 223: 113–124.

    Article  Google Scholar 

  • Matlack G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 66: 185–194.

    Article  Google Scholar 

  • McEuen A.B. and Curran L.M., 2004. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85: 507–518.

    Article  Google Scholar 

  • Modry M., Hubeny D., and Rejsek K., 2004. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. For. Ecol. Manage. 188: 185–195.

    Article  Google Scholar 

  • Nakashizuka T., 2001. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16: 205–210.

    Article  PubMed  Google Scholar 

  • Nathan R. and Muller-Landau H.C., 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15: 278–285.

    Article  PubMed  Google Scholar 

  • Petit R.J., Bodenes C., Ducousso A., Roussel G., and Kremer A., 2004. Hybridization as a mechanism of invasion in oaks. New Phytol. 161: 151–164.

    Article  CAS  Google Scholar 

  • Rameau J.-C., Mansion D., and Dumé G., 1989. Flore Forestière Française. Guide écologique illustré, Plaines et collines, Institut Développement Forestier, Dijon, 1785 p.

    Google Scholar 

  • Ranney J.W., Bruner M.C., and Levenson J.B., 1981. The importance of edge in the structure and dynamics of forest islands. In: Burgess R.L. and Sharpe D.M. (Eds.), Forest island dynamics in man-dominated landscapes, Springer Verlag, New York, pp. 67–95.

    Google Scholar 

  • Streng D.R., Glitzenstein J.S., and Harcombe P.A., 1989. Woody seedling dynamics in an east Texas floodplain forest. Ecol. Monogr. 59: 177–204.

    Article  Google Scholar 

  • SYSTAT, 1999. Systat (R) 9.0 for Windows (R), Statistics I, SPSS, Chicago.

    Google Scholar 

  • Tapper P.G., 1992. Irregular fruiting in Fraxinus excelsior. J. Veg. Sci. 3: 41–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, M., Deconchat, M., Balent, G. et al. Diversity of woody plant seedling banks under closed canopy in fragmented coppice forests. Ann. For. Sci. 65, 511 (2008). https://doi.org/10.1051/forest:2008029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008029