Skip to main content
  • Original Article
  • Published:

Changes in nitrogen level and mycorrhizal structure of Scots pine seedlings inoculated with Thelephora terrestris

Modifications du niveau d’azote et de la structure mycorhizienne de semis de pin sylvestre inoculés par Thelephora terrestris

Abstract

  • • We investigated the influence of Thelephora terrestris, an ectomycorrhizal fungus, on the concentration of nitrogen in needles of Pinus sylvestris L. seedlings and their mycorrhizal structure within four seasons of growth.

  • • Seedlings were grown in four treatments: (I) inoculated + 0.030 g N, (II) inoculated + 0.045 g N, (III non-inoculated + 0.030 g N, (IV) non-inoculated + 0.045 g N under laboratory conditions and later planted in post-agricultural land.

  • • For inoculated treatments, statistically significant differences in N concentration of needles were observed for two- and four-year-old seedlings. The number of ectomycorrhizae and concentration of N in needles were negatively correlated. After four seasons of growth the greatest numbers of ectomycorrhizae were present on seedlings from treatment II, and the smallest on seedlings from treatment IV.

  • • Two-year-old seedlings had been colonized by at least six different fungal taxa, i.e. Cenococcum geophilum, Hebeloma crustuliniforme, Rhizopogon sp., Suillus bovinus, Thelephora terrestris and a non-identified one. Treatments I and II were dominated by the ectomycorrhizae of T. terrestris and their number was significantly greater than in treatments III or TV. On four-year-old seedlings ectomycorrhizae of T. terrestris were dominated in all treatments, while ectomycorrhizae of Hebeloma sp. were not found.

Résumé

  • • L’influence du champignon ectomycorhizien Thelephora terrestris sur la concentration en azote dans les aiguilles de semis de pin sylvestre et sur la structure mycorhizienne des plants a été suivie durant quatre saisons de croissance.

  • • Les semis ont été cultivés sous quatre traitements : (I) inoculé + 0,030 g N, (II) inoculés + 0,045 g N, (III non inoculés + 0,030 g N, (IV) non inoculés + 0,045 g N, dans les conditions du laboratoire avant d’être plantés sur le terrain.

  • • Dans les traitements d’inoculés, des différences significatives ont été observées dans la concentration des aiguilles en azote pour les semis de deux et quatre ans. Le nombre de mycorhizes et la concentration des aiguilles en azote étaient corrélés négativement. Après quatre saisons de croissance, le plus grand nombre de mycorhizes a été obtenu dans le traitement II et le plus petit dans le traitement IV

  • • Les semis de deux ans avaient été colonisés par au moins six taxons différents de champignon : Cenococcum geophilum, Hebeloma crustuliniforme, Rhizopogon sp., Suillus bovinus, Thelephora terrestris et un autre taxon indéterminé. Dans les traitements I et II, les ectomycorhizes de T. terrestris dominaient et leur nombre était plus élevé que dans les traitements III et IV Pour les semis de quatre ans, les ectomycorhizes de T. terrestris dominaient dans tous les traitements, tandis que celles de Hebeloma sp. étaient absentes.

References

  • Aerts R., 2002. The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Heijden M.G.A. and Sanders I.R. (Eds.), Mycorrhizal Ecology, Springer, Berlin-Heidelberg -New York, pp. 117–131.

    Google Scholar 

  • Agerer R., 1987–2006. Colour Atlas of Ectomycorrhizae. Einhorn Verlag, Schwabisch-Gmünd.

    Google Scholar 

  • Agerer R., 2001. Exploration types of ectomycorrhizae. Mycorrhiza 11: 107–114.

    Article  Google Scholar 

  • Agerer R. and Rambold G., 2004–2007. DEEMY—An information system for characterization and determination of ectomycorrhizae, http://www.deemy.de, Munich, Ludwig Maximilians University.

    Google Scholar 

  • Bergmann W., 1992. Nutritional disorders of plants. Gustav Fischer, Verlag Jena-Stuttgart-New York.

    Google Scholar 

  • Colpaert J.V., Van Assche J.A., and Luijtens K., 1992. The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol. 120: 127–135.

    Article  Google Scholar 

  • Colpaert J.V., Van Tichelen K.K., Van Assche J.A., and Van Laere A., 1999. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol. 143: 589–597.

    Article  CAS  Google Scholar 

  • Dunabeitia M., Rodriguez N., Salcedo I., and Sarrionandia E., 2004. Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque Country. For. Ecol. Manage. 195: 129–139.

    Article  Google Scholar 

  • Erland S. and Taylor A., 2002. Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: Heijden M.G.A. and Sanders I.R. (Eds.), Mycorrhizal Ecology, Springer, Berlin-Heidelberg -New York, pp. 163–193.

    Google Scholar 

  • Fonder W., 2002. Organizacyjne i ekonomiczne aspekty zwiększania lesistości w Polsce. Post. Nauk Rol. Vol. 49/54, No3.

  • Gardes M. and Bruns T., 1993. ITS primers with enhanced specifity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Gherbi H., Delaruelle C., Selosse M.A., and Martin F., 1999. High genetic diversity in a population of the ectomycorrhizal basidiomycete Laccaria amethystine in a 150-year-old beech forest. Mol. Ecol. 8: 2003–2013.

    Article  PubMed  CAS  Google Scholar 

  • Guidot A., Debaud J.C., Effosse A., and Marmeisse R., 2003. Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytol. 161: 539–547.

    Article  Google Scholar 

  • Harley J.L. and Smith S.E., 1983. Mycorrhizal Symbiosis, Academic Press, Toronto.

    Google Scholar 

  • Hilszczańska D., 2004. Mycorrhizal status of Scots pine Pinus sylvestris L. seedlings grown in watered and non-watered nursery condition. Dendrobiology 52: 23–28.

    Google Scholar 

  • Hobbie E.A. and Colpaert J.V., 2003. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol. 157: 115–126.

    Article  CAS  Google Scholar 

  • Jones M.D., Durall D.M., and Linker P.B., 1990. Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol. 115: 259–267.

    Article  CAS  Google Scholar 

  • Kowalski S., 1997. Practical aspects of mycotrophism in forest nurseries. Sylwan 6: 5–15.

    Google Scholar 

  • Le Tacon F., Alvarez I.F., Bouchard D., Henrion B., Jackson M.R, Luff S., Parlade I.J., Pera J., Stenström E., Villeneuve N., and Walker C., 1994. Variation in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Mycorrhizas in ecosystems, CAB, Wallingford, pp. 119–134.

    Google Scholar 

  • Michelsen A., Quarmby C., Sleep D., and Jonasson S., 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystem is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115: 406–418.

    Article  Google Scholar 

  • Michelsen A., Schmidt I.K., Jonasson S., Quarmby C., and Sleep D., 1996. Leaf 15N abundance of subartic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of nitrogen. Oecologia 105: 53–63.

    Article  Google Scholar 

  • Nadelhoffer K., Shaver G., Fry B., Giblin A., Jonsson L., and McKane R., 1996. 15N natural abundances and N use by tundra plants. Oecologia 107: 386–394.

    Article  Google Scholar 

  • Pera J., Alvarez I.F., Rincon A., and Parlade J., 1999. Field performance in northern Spain of Douglas-fir seedlings inoculated with ectomycorrhizal fungi. Mycorrhiza 9: 77–84.

    Google Scholar 

  • Persson H., 1979. Fine root production, mortality and decomposition in forest ecosystems. Vegetatio 41: 101–109.

    Article  Google Scholar 

  • Raich J.W. and Nadelhoffer K.J., 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70: 1346–1354.

    Article  Google Scholar 

  • Redecker D., Szaro T.M., Bowman R.J., and Bruns T.D., 2001. Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol. Ecol. 10: 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  • Rillig M., Treseder K.K., and Allen M.F., 2002. Global change and mycorrhizal fungi. In: Heijden M.G.A. and Sanders I.R. (Eds.), Mycorrhizal Ecology, Springer, Berlin-Heidelberg -New York, pp. 135–153.

    Google Scholar 

  • Rousseau J.V.D., Reid C.C.P., and English R.J., 1992. Relationship between biomass of the mycorrhizal fungus Pisolithus tinctorius and phosphorus uptake in loblolly pine seedlings. Soil Biol. Biochem. 24: 183–184.

    Article  Google Scholar 

  • Rudawska M., Leski T., and Gornowicz R., 2001. Mycorrhizal status of Pinus sylvestris nursery stock in Poland as influenced by nitrogen fertilization. Dendrobiology 46: 49–58.

    Google Scholar 

  • Sanantonio D. and Sanantonio E., 1987. Effect of thining on production and mortality of fine roots in a Pinus radiata plantation on a fertile site in New Zealand. Can. J. For. Res. 17: 919–928.

    Article  Google Scholar 

  • Simard S.W., Jones M.D., and Durall D.M., 2002. Carbon and nutrient fluxes within and between mycorrhizal plants. In: Heijden M.G.A. and Sanders I.R. (Eds.), Mycorrhizal Ecology, Springer, Berlin-Heidelberg -New York, pp. 34–61.

    Google Scholar 

  • Stenström E., 1991. The effects of flooding on the formation of ectomycorrhizae in Pinus sylvestris seedlings. Plant Soil 131: 247–250.

    Article  Google Scholar 

  • Sokal R.R. and Rohlf F.J., 1995. Biometry, 3rd ed., Freeman and Company, San Francisco.

    Google Scholar 

  • Termorshuizen A.J. and Ket P.C., 1991. Effects of ammonium and nitrate on mycorrhizal seedlings of Pinus sylvestris. Eur. J. For. Pathol. 21: 404–413.

    Article  Google Scholar 

  • Thomson B.D., Grove T.S., Malajczuk N., and Hardy G.E.S., 1994. The effectiveness of ectomycorrhizal fungi increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil. New Phytol. 126: 517–524.

    Article  Google Scholar 

  • Unestam T. and Sun Y.P., 1995. Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5: 301–311.

    Article  Google Scholar 

  • Wallander H., Arnebrandt K., and Dahlberg A., 1999. Relationship between fungal uptake of ammonium, fungal growth and nitrogen availability in ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 8: 215–223.

    Article  CAS  Google Scholar 

  • Väre H., 1990. Effect of soil fertility on root colonization and plant growth of Pinus sylvestris nursery seedlings inoculated with different ectomycorrhizal fungi. Scand. J. For. Res. 5: 493–499.

    Article  Google Scholar 

  • Wessels J.G.H., 1993. Wall growth, protein excretion and morphogenesis in fungi. New Phytol. 123: 397–413.

    Article  CAS  Google Scholar 

  • White T.J., Bruns T., Lee S., and Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gefland D.H., Sninsky J., White T.J. (Eds.), PCR Protocols. A Guide to Methods and Amplifications, Academic Press, pp. 315–322.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Hilszczańska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilszczańska, D., Małecka, M. & Sierota, Z. Changes in nitrogen level and mycorrhizal structure of Scots pine seedlings inoculated with Thelephora terrestris . Ann. For. Sci. 65, 409 (2008). https://doi.org/10.1051/forest:2008020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008020