Skip to main content
  • Original Article
  • Published:

Stem dimensional fluctuation in Jeffrey pine from variation in water storage as influenced by thinning and prescribed fire

Fluctuations dimensionnelles chez Pinus jeffreyi Grev. & Balf. et variations dans le stockage d’eau influencées par l’éclaircie et le feu prescrit

Abstract

Forest thinning utilizing cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their impacts on water storage in the extensible tissues of dominant and codominant trees in an uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) stand on the east slope of the Sierra Nevada. Prior to the onset of the third growing season following thinning and the second season after burning, manual band dendrometers were installed at breast height on the selected trees and readings of diurnal fluctuation in stem circumference, an indication of bole water status, were taken monthly for one year. Diameter and relative diameter fluctuation were calculated from the circumference measurements. Overall, thinning had a positive influence on stem water recharge capacity, with the most pronounced effects evident in the latter part of the growing season. During this period, bole contraction in thinned stand portions was 49 to 55% greater than in the unthinned control, suggesting that both a greater volume of stored water was available for transpiration and was transpired in trees of the former treatment. There was no clear evidence that harvesting method affected stem water storage and influences of underburning were also absent entirely. Seasonal effects on diurnal changes in stem diameter were prominent, as the extent to which boles contracted generally increased over the course of the growing season, whereas fluctuations were at a minimum during the colder months. The magnitude of stem dimensional flux was found to be negatively correlated with initial tree DBH in one instance, while negative relationships between the former and live crown length as well as percentage were also revealed, albeit infrequently. Changes in bole size were positively correlated with residual basal area in some cases. These results suggest that improvement in water relations can be realized from density management in a dry site forest type with no apparent compromise of this benefit by broadcast underburning.

Résumé

Les éclaircies en forêt utilisant les systèmes de débit à la scie et de récolte de l’ensemble de l’arbre avec ultérieurement un brûlage par le bas ont été évaluées pour leurs impacts sur le stockage en eau dans les tissus extensibles des arbres dominants et codominants dans un peuplement inéquienne de Pinus jeffreyi Grev. & Balf sur le versant est de la Sierra Nevada. Avant le début de la troisième année de croissance suivant l’éclaircie et la deuxième saison après le feu, des dendromètres manuels à bande ont été installés à hauteur de poitrine sur des arbres sélectionnés et la lecture des fluctuations journalières de la circonférence des arbres, une indication sur le statut hydrique du tronc, étaient faite mensuellement pendant une année. Le diamètre et les fluctuations de diamètre ont été calculés à partir des mesures de circonférence. En général, l’éclaircie a une influence positive sur la capacité de recharge en eau du tronc, avec les effets évidents les plus prononcés dans la dernière partie de la saison de croissance. Pendant cette période, la contraction du tronc dans les parties éclaircies des peuplements était de 49 à 55 % plus grande que le témoin non éclairci, suggérant qu’à la fois un plus grand volume d’eau stocké était disponible pour la transpiration et était transpiré par les arbres du premier traitement. Il n’y a pas une preuve claire que la méthode de récolte affecte le stockage d’eau dans le tronc et l’influence du brûlage était aussi totalement absente. Les effets saisonniers sur les changements diurnes du diamètre du tronc étaient proéminents, alors que l’importance des troncs contractés s’est accrue généralement dans le courant de la saison de croissance tandis que les fluctuations ont été au minimum pendant les mois froids de l’année. Dans un cas, l’ampleur de la dimension du flux a été trouvée corrélée négativement avec le diamètre initial, à hauteur de poitrine, de l’arbre, tandis qu’une relation négative entre ce dernier et la longueur de la couronne vivante comme en pourcentage a été aussi révélée, bien que peu fréquemment. Dans quelques cas, les changements dans la taille du tronc ont été positivement corrélés avec la surface terrière résiduelle. Ces résultats suggèrent qu’une amélioration des relations hydriques peut être réalisée par une gestion de la densité des peuplements dans les forêts de zones sèche sans apparemment compromettre ce bénéfice par un brûlage par surface.

References

  1. Arno S.F., Fire in western forest ecosystems, in: Brown J.K., Smith J.K. (Eds.), Wildland fire in ecosystems: effects of fire on flora, USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-42, Vol. 2, Ogden, UT, 2000, pp. 97–120.

  2. Aussenac G., Granier A., Effects of thinning on water stress and growth in Douglas-fir, Can. J. For. Res. 18 (1988) 100–105.

    Article  Google Scholar 

  3. Barrett J.W., McDonald P.M., Ronco F. Jr., Ryker R.A., Interior ponderosa pine, in: Eyre, F.H. (Ed.), Forest cover types of the United States and Canada, Soc. Am. For., Washington, DC, 1980, pp. 114–115.

    Google Scholar 

  4. Brennan L.A., Hermann S.M., Prescribed fire and forest pests: solutions for today and tomorrow, J. For. 92 (1994) 34–37.

    Google Scholar 

  5. Brix H., Mitchell A.K., Thinning and nitrogen fertilization effects on soil and tree water stress in a Douglas-fir stand, Can. J. For. Res. 16 (1986) 1334–1338.

    Article  Google Scholar 

  6. Christiansen E., Waring R.H., Berryman A.A., Resistance of conifers to bark beetle attack: searching for general relationships, For. Ecol. Manage. 22 (1987) 89–106.

    Article  Google Scholar 

  7. Cregg B.M., Hennessey T.C., Dougherty P.M., Water relations of loblolly pine trees in southeastern Oklahoma following precommercial thinning, Can. J. For. Res. 20 (1990) 1508–1513.

    Article  Google Scholar 

  8. Curtis R.O., Marshall D.D., Why quadratic mean diameter? West. J. Appl. For. 15 (2000) 137–139.

    Google Scholar 

  9. Davis L.C., Johnson K.N., Bettinger P.S., Howard T.E., Forest management, 4th ed., McGraw-Hill, New York, 2001, 804 p.

    Google Scholar 

  10. Donner B.L., Running S.W., Water stress response after thinning Pinus contorta stands in Montana, For. Sci. 32 (1986) 614–625.

    Google Scholar 

  11. Edmonds R.L., Agee J.K., Gara R.I., Forest health and protection, McGraw-Hill, New York, 2000, 630 p.

    Google Scholar 

  12. Fecko R.M., Walker R.F., Frederick W.B., Johnson D.W., Miller W.W., Influences of mechanized thinning and prescribed under-burning on radial growth of Jeffrey pine, J. Sustain. For. (2008) in press.

  13. Fisher R.F., Binkley D., Ecology and management of forest soils, 3rd ed., John Wiley and Sons, New York, 2000, 489 p.

    Google Scholar 

  14. Ginn S.E., Seiler J.R., Cazell B.H., Kreh R.E., Physiological and growth responses of eight-year old loblolly pine stands to thinning, For. Sci. 37 (1991) 1030–1040.

    Google Scholar 

  15. Hallin W.E., The application of unit area control in the management of ponderosa-Jeffrey pine at Blacks Mountain Experimental Forest, USDA For. Serv. Tech. Bull. 1191, Washington, DC, 1959, 96 p.

  16. Helms J.A., The California region, in: Barrett J.W (Ed.), Regional silviculture of the United States, 3rd ed., John Wiley and Sons, New York, 1995, pp. 441–497.

    Google Scholar 

  17. Jenkinson J.L., Pinus jeffreyi Grev. & Balf. Jeffrey pine, in: Burns R.M., Honkala B.H. (Tech. Coords.), Silvics of North America: Vol. 1, Conifers, USDA For. Serv. Agric. Handb. 654, Washington, DC, 1990, pp. 359–369.

  18. Kozlowski T.T., Diurnal variations in stem diameters of small trees, Bot. Gazette 128 (1967) 60–68.

    Article  Google Scholar 

  19. Kozlowski T.T., Kramer P.J., Pallardy S.G., The physiological ecology of woody plants, Academic Press, New York, 1991, 657 p.

    Google Scholar 

  20. Kozlowski T.T., Pallardy S.G., Physiology of woody plants, 2nd ed., Academic Press, New York, 1997, 411 p.

    Google Scholar 

  21. Kozlowski T.T., Winget C.H., Diurnal and seasonal variation in radii of tree stems, Ecology 45 (1964) 149–155.

    Article  Google Scholar 

  22. Kramer P.J., Water relations of plants, Academic Press, New York, 1983, 489 p.

    Google Scholar 

  23. Lassoie J.P., Diurnal dimensional fluctuations in a Douglas-fir stem in response to tree water status, For. Sci. 19 (1973) 251–255.

    Google Scholar 

  24. Laudenslayer W.F. Jr., Darr H.H., Smith S., Historical effects of forest management practices on eastside pine communities in northeastern California, in: Tecle, A., Covington, W.W. (Tech. Coords.), Multiresource management of ponderosa pine forests, USDA For. Serv. Gen. Tech. Rep. RM-185, Fort Collins, CO, 1989, pp. 26–34.

  25. MacDougal D.T., Tree growth, Chronica Botanica Co., Waltham, MA, 1938, 240 p.

    Google Scholar 

  26. Meyer W.H., Yield of even-aged stands of ponderosa pine, USDA Tech. Bull. 630, Washington, DC, 1938, 59 p.

  27. Nyland R.D., Silviculture: concepts and applications, 2nd ed., McGraw-Hill, New York, 2002, 682 p.

    Google Scholar 

  28. Pothier D., Margolis H.A., Changes in the water relations of balsam fir and white birch saplings after thinning, Tree Physiol. 6 (1990) 371–380.

    PubMed  Google Scholar 

  29. Reid D.E.B., Silins U., Lieffers V.J., Sapwood hydraulic recovery following thinning in lodgepole pine, Ann. For. Sci. 63 (2006) 329–338.

    Article  Google Scholar 

  30. Ryan K.C., Frandsen W.H., Basal injury from smoldering fires in mature Pinus ponderosa Laws., Int. J. Wildl. Fire 1 (1991) 107–118.

    Article  Google Scholar 

  31. Ryan K.C., Reinhardt E.D., Predicting postfire mortality of seven western conifers, Can. J. For. Res. 18 (1988) 1291–1297.

    Article  Google Scholar 

  32. Sakai A., Weiser C.J., Freezing resistance of trees in North America with reference to tree regions, Ecology 54 (1973) 118–126.

    Article  Google Scholar 

  33. Saveland J.M., Neuenschwander L.F., Changing stand density and composition with prescribed fire, in: Schmidt W.C. (Comp.), Proceedings — future forests of the Mountain West: a stand culture symposium, USDA For. Serv. Gen. Tech. Rep. INT-243, Ogden, UT, 1988, pp. 330–331.

  34. Stone J.E., Kolb T.E., Covington W.W., Effects of restoration thinning on presettlement Pinus ponderosa in northern Arizona, Restor. Ecol. 7 (1999) 172–182.

    Article  Google Scholar 

  35. Swezy D.M., Agee J.K., Prescribed fire effects on fine-root and tree mortality in old-growth ponderosa pine, Can. J. For. Res. 21 (1991) 626–634.

    Article  Google Scholar 

  36. Tang Z., Chambers J.L., Guddanti S., Barnett J.P., Thinning, fertilization, and crown position interact to control physiological responses of loblolly pine, Tree Physiol. 19 (1999) 87–94.

    PubMed  CAS  Google Scholar 

  37. Turner N.C., Waggoner P.E., Effects of changing stomatal width in a red pine forest on soil water content, leaf water potential, bole diameter, and growth, Plant Physiol. 43 (1968) 973–978.

    Article  PubMed  CAS  Google Scholar 

  38. Urretavizcaya M.F., Defossé G.E., Gonda H.E., Short-term effects of fire on plant cover and soil conditions in two Austrocedrus chilensis (cypress) forests in Patagonia, Argentina, Ann. For. Sci. 63 (2006) 63–71.

    Google Scholar 

  39. USDA Forest Service, Soil survey of the Tahoe National Forest area, California, USDA For. Serv. Pacific Southwest Region, San Francisco, CA, 1994, 377 p.

    Google Scholar 

  40. Van Mantgem P., Schwartz M., An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine, Can. J. For. Res. 34 (2004) 1343–1347.

    Article  Google Scholar 

  41. Walker R.F., Fecko R.M., Frederick W.B., Johnson D.W., Miller W.W., Todd D.E., Murphy J.D., Influences of thinning and prescribed fire on water relations of Jeffrey pine: xylem and soil water potentials, J. Sustain. For. 23 (4) (2006) 35–59.

    Google Scholar 

  42. Walker R.F., Fecko R.M., Frederick W.B., Murphy J.D., Johnson D.W., Miller W.W., Thinning and prescribed fire effects on forest floor fuels in the east side Sierra Nevada pine type, J. Sustain. For. 23 (2) (2006) 99–115.

    Google Scholar 

  43. Waring R.H., Running S.W., Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir, Plant Cell Environ. 1 (1978) 131–140.

    Article  Google Scholar 

  44. Waring R.H., Schlesinger W.H., Forest ecosystems: concepts and management, Academic Press, New York, 1985, 340 p.

    Google Scholar 

  45. Weaver H., Fire — Nature’s thinning agent in ponderosa pine stands, J. For. 45 (1947) 437–444.

    Google Scholar 

  46. Zaerr J.B., Moisture stress and stem diameter in young Douglas-fir, For. Sci. 17 (1971) 466–469.

    Google Scholar 

  47. Zweifel R., Häsler R., Dynamics of water storage in mature sub-alpine Picea abies: temporal and spatial patterns of change in stem radius, Tree Physiol. 21 (2001) 561–569.

    PubMed  CAS  Google Scholar 

  48. Zweifel R., Item H., Häsler R., Link between diurnal stem radius changes and tree water relations, Tree Physiol. 21 (2001) 869–877.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecko, R.M., Walker, R.F., Frederick, W.B. et al. Stem dimensional fluctuation in Jeffrey pine from variation in water storage as influenced by thinning and prescribed fire. Ann. For. Sci. 65, 201 (2008). https://doi.org/10.1051/forest:2007084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007084