Skip to main content
  • Original Article
  • Published:

Sources of within- and between-stand variability in specific leaf area of three ecologically distinct conifer species

Sources de variabilité intra et inter peuplements de la surface spécifique des aiguilles de trois espèce de conifère présentant des exigences écologiques contrastées

Abstract

Specific leaf area (SLA) is an important ecophysiological variable, but its variability within and between stands has rarely been simultaneously examined and modeled across multiple species. Extensive datasets on SLA in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), hybrid spruce (Picea engelmannii Parry × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carr.), and ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) were used to estimate variability of SLA within a canopy and its relationship to tree- and stand-level covariates, and to predict SLA at various locations in tree crowns. Also, in the case of hybrid spruce, variation in SLA due to different relative horizontal lengths from the bole was examined. In all species, SLA systematically increased from tree tip to crown base and decreased with foliage age class. Cardinal direction did not have a highly significant influence in either Douglas-fir or hybrid spruce, but SLA did significantly decrease from branch tip to bole in hybrid spruce. Tree- and stand-level (e.g. density, site index) factors had relatively little influence on SLA, but stand age did have a significant positive influence. For ponderosa pine, a significant relationship between canopy mean current-year SLA and carbon isotope discrimination was also found, suggesting the importance of water stress in this species. An equation was fitted to estimate SLA at various points in the canopy for each species and foliage age class using absolute height in the canopy, relative vertical height in the tree, and stand age.

Résumé

La surface spécifique des feuilles (SLA) est un paramètre écophysiologique important mais sa variabilité intra et inter-peuplements n’a jamais été examinée et modélisée sur des gammes larges d’espèces. Des jeux de données très détaillés de SLA de Douglas côtiers [Pseudotsuga menziesii var. menziesii (Mirb.) Franco], d’épicéas hybrides (Picea engelmannii Parry × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carr), et de pins ponderosa (Pinus ponderosa Dougl. ex P. & C. Laws.) ont été mobilisés pour évaluer la variabilité de SLA dans une canopée. Les relations entre SLA et des covariables à l’échelle de l’arbre ou du peuplement ont été précisées, un modèle prédictif de SLA à différents niveaux dans les couronnes a été construit. Dans le cas de l’épicéa, l’impact de la distance de branche entre l’aiguille et le tronc a également été testé. Dans toutes les espèces, SLA augmentait systématiquement du sommet des arbres à la base de la couronne, et diminuait avec la classe d’âge des aiguilles. La direction cardinale n’avait guère d’influence sur SLA ni dans le cas du Douglas ni dans celui de l’épicéa; mais SLA diminuait systématiquement depuis l’extrémité des branches vers le tronc. Les facteurs arbre et peuplement (comme la densité, l’indice de productivité de la station) n’avaient que peu d’impact sur SLA alors que l’âge du peuplement avait un effet significatif et positif. Pour le pin ponderosa, une relation significative a été détectée entre la valeur moyenne de SLA des aiguilles de l’année et la discrimination isotopique du carbone, ce qui suggère l’impact des contraintes hydriques pour cette espèce. Un modèle de prédiction de SLA à différentes positions dans la canopée a été ajusté sur les données de chaque espèce et classe d’âge, en se basant sur la hauteur dans la canopée, la hauteur relative dans l’arbre et l’âge du peuplement.

References

  1. Apple M., Tiekotter K., Snow M., Young J., Soeldner A., Phillips D., Tingey D., Bond B.J., Needle anatomy changes with increasing tree age in Douglas-fir, Tree Physiol. 22 (2002) 129–136.

    PubMed  Google Scholar 

  2. Bartelink H.H., Allometric relationships on biomass and needle area of Douglas-fir, For. Ecol. Manage. 86 (1996) 193–203.

    Article  Google Scholar 

  3. Bond B.J., Farnsworth B.T., Coulombe R.A., Winner W.E., Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance, Oecologia 120 (1999) 183–192.

    Article  Google Scholar 

  4. Brooks J.R., Hinckley T.M., Sprugel D.G., Acclimation responses of mature Abies amabilis sun foliage to shading, Oecologia 100 (1994) 316–324.

    Article  Google Scholar 

  5. Chen H.Y.H., Klinka K., Kayahara G.J., Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings, Can. J. For. Res. 26 (1996) 1149–1157.

    Article  Google Scholar 

  6. Clement C.J., Banner A., Ecosystem mapping of the Date Creek silvicultural systems research area, BC Ministry of Forests, Victoria, BC, 1992, p. 33.

    Google Scholar 

  7. Del Rio E., Berg A., Specific leaf area of Douglas-fir reproduction as affected by light and needle age, For. Sci. 25 (1979) 183–186.

    Google Scholar 

  8. Ellsworth D.S., Reich P.B., Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia 96 (1993) 169–178.

    Article  Google Scholar 

  9. Evans J.R., Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78 (1989) 9–19.

    Article  Google Scholar 

  10. Farquhar G.D., Ehleringer J.R., Hubick K.T., Carbon isotope discrimination and photosynthesis, Ann. Rev. Plant Physiol. Plant Mol. Biol. 40 (1989) 503–537.

    Article  CAS  Google Scholar 

  11. Franklin J.F., Dyrness C.T., Natural vegetation of Oregon and Washington, USDA Forest Service General Technical Report GTR-PNW-8, Portland, OR, 1973.

  12. Gholz H.L., Linder S., McMurtrie R.E., Environmental constraints on the structure and productivity of pine forest ecosystems: a comparative analysis, Munksgaard International Booksellers and Publishers, Copenhagen, Denmark, 1994.

    Google Scholar 

  13. Gilmore D.W., Seymour R.S., Halteman W.A., Greenwood M.S., Canopy dynamics and the morphological development of Abies balsamea: effects of foliage age on specific leaf area and secondary vascular development, Tree Physiol. 15 (1995) 47–55.

    Article  PubMed  Google Scholar 

  14. Gower S.T., Reich P.B., Son Y., Canopy dynamics and above ground production of five tree species with different leaf longevities, Tree Physiol. 12 (1993) 327–345.

    PubMed  Google Scholar 

  15. Hager H., Sterba H., Specific leaf area and needle weight of Norway spruce (Picea abies) in stands of different densities, Can. J. For. Res. 15 (1985) 389–392.

    Article  Google Scholar 

  16. Hollinger D.Y., Canopy organization and foliage photosynthetic capacity in a broad-leaved evergreen montane forest, Funct. Ecol. 3 (1989) 53–62.

    Article  Google Scholar 

  17. Ishii H., Ford E.D., Boscolo M.E., Manriquez A.C., Wilson M.E., Hinckley T.M., Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position, and epicormic shoot production, Tree Physiol. 22 (2002) 31–40.

    PubMed  Google Scholar 

  18. Kennedy R.E., Causes and consequences of uncertainty in the application of a biogeochemical model to a large geographic region, Ph.D. dissertation, Department of Forest Science, Oregon State University, Corvallis, OR, 2004, p. 152.

    Google Scholar 

  19. Kershaw J.A., Maguire D.A., Crown structure in western hemlock, Douglas-fir, and grand fir in western Washington: horizontal distribution of foliage within branches, Can. J. For. Res. 26 (1996) 128–142.

    Article  Google Scholar 

  20. Maguire D.A., Bennett W.S., Patterns in the vertical distribution of foliage in young coastal Douglas-fir, Can. J. For. Res. 26 (1996) 1991–2005.

    Article  Google Scholar 

  21. Marshall J.D., Monserud R.A., Foliage height influences specific leaf area of three conifer species, Can. J. For. Res. 33 (2003) 164–170.

    Article  Google Scholar 

  22. Meidinger D., Pojar J., Ecosystems of British Columbia, Research Branch, British Columbia Ministry of Forests, Victoria, BC, 1991, p. 330.

    Google Scholar 

  23. Meinzer F.C., Goldstein G., Grantz D.A., Carbon isotope discrimination and gas exchange in coffee during adjustment to different soil moisture regimes, in: Ehleringer J.R., Hall A.E., Farquhar G.D. (Eds.), Stable isotopes and plant carbon-water relations, Academic Press, San Diego, 1993, pp. 327–345.

    Google Scholar 

  24. Morgan M.G., MacLean D.A., Piene H., Variation in balsam fir needle length due to crown position, foliage age, and intertree differences, For. Sci. 29 (1983) 412–422.

    Google Scholar 

  25. Nagel L.M., O’Hara K.L., The influence of stand structure on ecophysiological leaf characteristics of Pinus ponderosa in western Montana, Can. J. For. Res. 31 (2001) 2173–2182.

    Article  Google Scholar 

  26. Niinemets Ü., Acclimation to low irradiance in Picea abies: influence of past and present light climate on foliage structure and function, Tree Physiol. 17 (1997) 723–732.

    PubMed  Google Scholar 

  27. Niinemets Ü., Ellsworth D., Lukjanova A., Tobias M., Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length, Tree Physiol. 22 (2002) 747–761.

    PubMed  Google Scholar 

  28. Niinemets Ü., Kull O., Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in needle morphology, Tree Physiol. 15 (1995) 307–315.

    PubMed  Google Scholar 

  29. Niinemets Ü., Kull O., Tenhunen J.D., An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance, Tree Physiol. 18 (1998) 681–696.

    PubMed  Google Scholar 

  30. Nippert J.B., Marhsall J.D., Sources of variation in ecophysiological parameters in Douglas-fir and grand fir canopies, Tree Physiol. 23 (2003) 591–601.

    PubMed  Google Scholar 

  31. Pierce L.L., Running S.W., Walker J., Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen content, Ecol. Appl. 4 (1994) 313–321.

    Article  Google Scholar 

  32. Pinherio J.C., Bates D.M., Mixed-effects models in S and S-Plus, Springer-Verlag, New York, NY, 2000.

    Book  Google Scholar 

  33. Reich P.B., Walters M.B., Ellsworth D.S., Vose J.M., Volin J.C., Gresham C., Bowman W.D., Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups, Oecologia 114 (1998) 471–482.

    Article  Google Scholar 

  34. Richardson A.D., Berlyn G.P., Ashton P.M.S., Thadani R., Cameron I.R., Foliar plasticity of hybrid spruce in relation to crown position and stand age, Can. J. Bot. 78 (2000) 305–317.

    Google Scholar 

  35. Roberts J., Hopkins R., Morecroft M., Towards a predictive description of forest canopies from litter properties, Funct. Ecol. 13 (1999) 265–272.

    Article  Google Scholar 

  36. Sellin A., Kupper P., Spatial variation in sapwood area to leaf area ratio and specific leaf area within a crown of silver birch, Trees 20 (2006) 311–319.

    Article  Google Scholar 

  37. Specht R.L., Specht A., Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients, Acta. Oecol. 10 (1989) 191–213.

    Google Scholar 

  38. St. Clair J.B., Genetic variation in tree structure and its relation to size in Douglas-fir. II. Crown form, branch characters, and foliage characters, Can. J. For. Res. 24 (1994) 1236–1247.

    Article  Google Scholar 

  39. Sutton B.C.S., Pritchard S.C., Gawley J.R., Newton C.H., Kiss G.K., Analysis of Sitka spruce-interior spruce introgressions in British Columbia using cytoplasmic and nuclear DNA probes, Can. J. For. Res. 24 (1994) 278–285.

    Article  Google Scholar 

  40. Temesgen H., LeMay V.M., Cameron I.R., Bivariate distribution functions for predicting twig leaf area within hybrid spruce crowns, Can. J. For. Res. 33 (2003) 2044–2051.

    Article  Google Scholar 

  41. Temesgen H., Weiskittel A.R., Leaf mass per area relationships across light gradients in hybrid spruce crowns, Trees 20 (2006) 522–530.

    Article  Google Scholar 

  42. Von Caemmerer S., Farquhar G.D., Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta 153 (1981) 376–387.

    Article  Google Scholar 

  43. Warren C.R., McGrath J.F., Adams M.A., Water availability and carbon isotope discrimination in conifers, Oecologia 127 (2001) 476–486.

    Article  Google Scholar 

  44. Weiskittel A.R., Maguire D.A., Garber S.M., Kanaskie A., Influence of Swiss needle cast on foliage age class structure and vertical distribution in Douglas-fir plantations of north coastal Oregon, Can. J. For. Res. 36 (2006) 1497–1508.

    Article  Google Scholar 

  45. White J.D., Scott N.A., Specific leaf area and nitrogen distribution in New Zealand forests: Species independently respond to intercepted light, For. Ecol. Manag. 226 (2006) 319–329.

    Article  Google Scholar 

  46. Wilson D.S., Soil-site productivity relationships of Central Oregon ponderosa pine, Ph.D. dissertation, Department of Forest Resources, Oregon State University, Corvallis, OR, 2003, p. 103.

    Google Scholar 

  47. Wood S., Generalized additive models, Chapman & Hall/CRC, New York, NY, 2006.

    Google Scholar 

  48. Wykoff W.R., Measuring and modeling surface area of ponderosa pine needles, Can. J. For. Res. 32 (2002) 1–8.

    Article  Google Scholar 

  49. Xiao C.-W, Janssens I.A., Yuste J.C., Ceulemans R., Variation of specific leaf area and upscaling to leaf area index in mature Scots pine, Trees 20 (2006) 304–310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiskittel, A.R., Temesgen, H., Wilson, D.S. et al. Sources of within- and between-stand variability in specific leaf area of three ecologically distinct conifer species. Ann. For. Sci. 65, 103 (2008). https://doi.org/10.1051/forest:2007075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007075