Skip to main content
Log in

Insolubility of milk powder products — A minireview

Insolubilité des poudres laitières — une mini-revue

  • Review
  • Published:
Dairy Science & Technology

Abstract

In this paper, the formation of insolubility in milk powder is described, and the factors affecting the reaction are discussed. The zone in which casein proteins are most sensitive to heat is in the moisture range that occurs during spray drying. The rate of reaction has been determined and shows differences of orders of magnitude with the moisture content. The effect of chemical reagents on the extent of reaction gives insights into the chemical bonds that inhibit hydration. Information on the drying of casein products and individual proteins is used to infer that the withdrawal of moisture from casein proteins and the concentration of divalent cations during drying lead to alterations in the conformation of proteins that have an adverse effect on their rehydration during reconstitution. Further work to fully characterise these effects is required.

Résumé

L’apparition de l’insolubilité des poudres laitières est décrite et les facteurs affectant cette réaction sont discutés dans cet article. La zone dans laquelle les caséines sont les plus sensibles à la chaleur se situe dans la gamme d’humidité intervenant au cours du procédé de séchage par atomisation. La vitesse de réaction a été déterminée et montre des différences d’ordres de grandeur des taux d’humidité. L’effet des réactifs chimiques sur l’étendue de la réaction donne un aperçu des liaisons chimiques qui inhibent l’hydratation. On peut déduire de l’information obtenue sur le séchage des caséines et des protéines individuelles que l’élimination de l’humidité des caséines et la concentration en cations divalents au cours du séchage conduisent à des modifications de la conformation des protéines qui peuvent avoir des effets négatifs sur leur réhydratation au cours de la reconstitution des poudres. Un travail ultérieur est nécessaire pour caractériser complètement ces effets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison S.D., Chang B., Randolph T.W., Carpenter J.F., Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding, Arch. Biochem. Biophys. 365 (1999) 289–298.

    Article  CAS  Google Scholar 

  2. Allison S.D., Dong A., Carpenter J.F., Counter-acting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration, Biophys. J. 71 (1996) 2022–2032.

    Article  CAS  Google Scholar 

  3. American Dry Milk Institute, Determination of solubility index, in: Bulletin 916 (Revised), Standards for Grades of Dry Milks Including Methods of Analysis, American Dry Milk Institute Inc., Chicago, Illinois, USA, 1971, pp. 26–27.

    Google Scholar 

  4. Aneja R.P., Equipment for recombination, in: Recombination of Milk and Milk Products, Alexandria, Egypt, 12–16 November 1988, Special Issue 9001, Int. Dairy Fed., Brussels, Belgium, 1988, pp. 186–195.

    Google Scholar 

  5. Anema S.G., Li Y., Re-equilibration of the minerals in skim milk during reconstitution, Milchwissenschaft 58 (2003) 174–178.

    CAS  Google Scholar 

  6. Anema S.G., Pinder D.N., Hunter R.J., Hemar Y., Effects of storage temperature on the solubility of milk protein concentrate (MPC85), Food Hydrocoll. 20 (2006) 386–393.

    Article  CAS  Google Scholar 

  7. Aoki T., Umeda T., Nakano T., Effect of sodium chloride on the properties of casein micelles, Milchwissenschaft 54 (1999) 91–93.

    CAS  Google Scholar 

  8. Baldwin A., Pearce D., Milk powder, in: Onwulata C. (Ed.), Encapsulated and Powdered Foods, Taylor & Francis, Boca Raton, Florida, USA, 2005, pp. 387–433.

    Chapter  Google Scholar 

  9. Baldwin A.J., Truong G.N.T., Development of insolubility in dehydration of dairy milk powders, Food Bioprod. Process. 85 (C3) (2007) 202–208.

    Article  Google Scholar 

  10. Cho Y., Singh H., Creamer L.K., Heat-induced interactions of β-lactoglobulin A and κ-casein B in a model system, J. Dairy Res. 70 (2003) 61–71.

    Article  CAS  Google Scholar 

  11. Creighton T.E., Proteins: Structures and Molecular Principles, W.H. Freeman and Co., New York, USA, 1984, pp. 139–152.

    Google Scholar 

  12. de Kruif C.G., Holt C., Casein micelle structure, functions and interactions, in: Fox P.F., McSweeney P.L.H. (Eds.), Advanced Dairy Chemistry. 1. Proteins, Part A, 3rd edn., Kluwer Academic/Plenum Publishers, New York, USA, 2003, pp. 233–276.

    Google Scholar 

  13. Edsall J.T., McKenzie H.A., Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties, Adv. Biophys. 16 (1983) 53–183.

    Article  CAS  Google Scholar 

  14. Eino M., The manufacture of recombined condensed milk, in: Recombination of Milk and Milk Products, Alexandria, Egypt, 12–16 November 1988, Special Issue 9001, Int. Dairy Fed., Brussels, Belgium, 1990, pp. 351–363.

    Google Scholar 

  15. Ellis J.R., Prillig E.B., Amann A.H., Tablet coating, in: Lachman L., Lieberman H.A., Karig J.L. (Eds.), The Theory and Practice of Industrial Pharmacy, 2nd edn., Lea & Febiger, Philadelphia, Pennsylvania, USA, 1976, pp. 359–388.

    Google Scholar 

  16. Fox P.F., Brodkorb A., The casein micelle: historical aspects, current concepts and significance, Int. Dairy J. 18 (2008) 677–684.

    Article  CAS  Google Scholar 

  17. Gaiani C., Schuck P., Scher J., Desobry S., Banon S., Dairy powder rehydration: influence of protein state, incorporation mode, and agglomeration, J. Dairy Sci. 90 (2007) 570–581.

    Article  CAS  Google Scholar 

  18. Gaucheron F., Le Graet Y., Briard V., Effect of NaCl addition on the mineral equilibrium of concentrated and acidified casein micelles, Milchwissenschaft 55 (2000) 82–86.

    CAS  Google Scholar 

  19. Gregory R.B., Protein hydration and glass transitions, in: Reid D.S. (Ed.), The Properties of Water in Foods ISOPOW 6, Blackie Academic & Professional, London, UK, 1998, pp. 57–99.

    Chapter  Google Scholar 

  20. Griffin M.C.A., Lyster R.L.J., Price J.C., The disaggregation of calcium-depleted casein micelles, Eur. J. Biochem. 174 (1988) 339–343.

    Article  CAS  Google Scholar 

  21. Grufferty M.B., Fox P.F., Effect of added NaCl on some physicochemical properties of milk, Ir. J. Food Sci. Technol. 9 (1985) 1–9.

    CAS  Google Scholar 

  22. Hall C.W., Hedrick T.I., Drying of Milk and Milk Products, 2nd edn., AVI Publishing Co. Inc., Westport, Connecticut, USA, 1971, pp. 103–105, 215–216.

    Google Scholar 

  23. Harland H.A., Coulter S.T., Jenness R., The effect of the various steps in the manufacture on the extent of serum protein denaturation in nonfat dry milk solids, J. Dairy Sci. 35 (1952) 363–368.

    Article  CAS  Google Scholar 

  24. Havea P., Protein interactions in milk protein concentrate powders, Int. Dairy J. 16 (2006) 415–422.

    Article  CAS  Google Scholar 

  25. Horne D.S., Casein interactions: casting light on the black boxes, the structure in dairy products, Int. Dairy J. 8 (1998) 171–177.

    Article  CAS  Google Scholar 

  26. Huppertz T., Fox P.F., Effect of NaCl on some physico-chemical properties of concentrated bovine milk, Int. Dairy J. 16 (2006) 1142–1148.

    Article  CAS  Google Scholar 

  27. International Dairy Federation, Dried milk and dried milk products — determination of insolubility index, IDF Standard 129, Int. Dairy Fed., Brussels, Belgium, 2005.

    Google Scholar 

  28. Jeantet R., Schuck P., Six T., Andre C., Delaplace G., The influence of stirring speed, temperature and solid concentration on the rehydration time of micellar casein powder, Dairy Sci. Technol., DOI: 10.1051/dst/2009043.

  29. Kudo N., Hols G., van Mil P.J.J.M., The insolubility index of moist skim milk powder: influence of the temperature of the secondary drying air, Neth. Milk Dairy J. 44 (1990) 89–98.

    Google Scholar 

  30. Kunz I.D., The physical properties of water associated with biomacromolecules, in: Duckworth R.B. (Ed.), Water Relations of Foods, Academic Press, London, UK, 1974, pp. 93–109.

    Google Scholar 

  31. Lampitt L.H., Bushill J.H., The physicochemical constitution of milk powder, Analyst 56 (1931) 778–794.

    Article  CAS  Google Scholar 

  32. Martin G.J.O., Williams R.P.W., Dunstan D.E., Comparison of casein micelles in raw and reconstituted skim milk, J. Dairy Sci. 90 (2007) 4543–4551.

    Article  CAS  Google Scholar 

  33. McKenna A.B., Effects of processing and storage on the reconstitution properties of whole milk and ultrafiltered skim milk powders, Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2000.

    Google Scholar 

  34. New Zealand Dairy Board, Milk protein products and process, Patent WO 01/41578, 2001.

  35. New Zealand Dairy Board, Monovalent salt enhances solubility of milk protein concentrate, Patent WO 02/096208, 2002.

  36. Nielsen L.S., Fee C.J., Chen X.D., The effects of temperature and holding time of external heating on solubility deterioration of a skim milk powder, Trans. IChemE 74 (Part C) (1996) 159–162.

    Google Scholar 

  37. Patel H.A., Singh H., Anema S.G., Creamer L.K., Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk, I Agric. Food Chem. 54 (2006) 3409–3420.

    Article  CAS  Google Scholar 

  38. Pisecky J., Handbook of Milk Powder Manufacture, Niro A/S, Copenhagen, Denmark, 1997, pp. 151–153.

    Google Scholar 

  39. Prestrelski S.J., Tedeschi N., Arakawa T., Carpenter J.F., Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers, Biophys. J. 65 (1993) 661–671.

    Article  CAS  Google Scholar 

  40. Qi P.X., Studies of casein micelle structure: the past and the present, Lait 87 (2007) 363–383.

    Article  CAS  Google Scholar 

  41. Rahman M.S., Glass transition data and models of foods, in: Rahman M.S. (Ed.), Food Properties Handbook, 2nd edn., CRC Press, Boca Raton, Florida, USA, 2009, p. 268.

    Chapter  Google Scholar 

  42. Schuck P., Davenel A., Mariette F., Briard V., Méjean S., Piot M., Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer, Int. Dairy J. 12 (2002) 51–57.

    Article  CAS  Google Scholar 

  43. Schuck P., Piot M., Méjean S., Le Graët Y., Fauquant J., Brulé G., Maubois J.-L., Déshydratation par atomisation de phosphocaséinate natif obtenu par microfiltration sur membrane, Lait 74 (1994) 375–388.

    Article  CAS  Google Scholar 

  44. van Hooydonk A.C.M., Hagedoorn H.G., Boerrigter I.J., The effect of various cations on the renneting of milk, Neth. Milk Dairy J. 40 (1986) 369–390.

    Google Scholar 

  45. Walstra P., Casein sub-micelles: do they exist?, Int. Dairy J. 9 (1999) 189–192.

    Article  CAS  Google Scholar 

  46. Walstra P., Jenness R., Dairy Chemistry and Physics, John Wiley & Sons, New York, USA, 1984, p. 106.

    Google Scholar 

  47. Walstra P., Jenness R., Dairy Chemistry and Physics, John Wiley & Sons, New York, USA, 1984, pp. 229–253.

    Google Scholar 

  48. Walstra P., Jenness R., Dairy Chemistry and Physics, John Wiley & Sons, New York, USA, 1984, pp. 307–309.

    Google Scholar 

  49. Wright N.C., Factors affecting the solubility of milk powders. 1. The effect of heat on the solubility of milk proteins, J. Dairy Res. 4 (1933) 122–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Baldwin.

About this article

Cite this article

Baldwin, A.J. Insolubility of milk powder products — A minireview. Dairy Sci. Technol. 90, 169–179 (2010). https://doi.org/10.1051/dst/2009056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/dst/2009056

Navigation