Skip to main content

Advertisement

Log in

Understanding lactose behaviour during storage by monitoring surface energy change using inverse gas chromatography

Compréhension du comportement du lactose au cours du stockage en suivant le changement d’énergie de surface par chromatographie gazeuse en phase inverse

  • Original Article
  • Published:
Dairy Science & Technology

Abstract

The purposes of this research were to use inverse gas chromatography (IGC) to examine surface energy changes to coarse lactose (CL) and micronized lactose (ML) during storage at high humidity and to relate these changes to powder properties. Surface energies, work of cohesion and surface heterogeneity were determined by IGC. Surface morphology, particle size distributions and amorphous content were determined by scanning electron microscopy, laser diffraction and time-of-flight particle sizing and dynamic vapour sorption, respectively. Surface energies (dispersive, polar and total) were higher for ML than for CL. Surface heterogeneity profiles indicated a greater number of energy sites on ML. No detectable amorphous content was present in lactoses. After storage at 75% relative humidity, the particle size increased and the span of distribution decreased for ML, indicating the formation of small agglomerates. The ability of agglomerated ML to disperse decreased after storage, indicating the formation of strong agglomerates during storage. The dispersive surface energies of CL and ML significantly decreased after storage (P < 0.05), while the polar surface energies significantly increased (P < 0.05). The total surface energy and work of cohesion of ML increased. IGC was useful to distinguish between lactose powders; the total surface energy and work of cohesion of ML were higher than those of CL. While the increase in total surface energy and work of cohesion of ML after storage was in good agreement with the formation of stronger agglomerates, these changes may have been associated more with moisture adsorption than with inherent surface energy changes to lactose.

Abstract

75% (P < 0.05), (P < 0.05)

Résumé

Le but de cette recherche était d’utiliser la chromatographie gazeuse en phase inverse (CGI) pour examiner les changements d’énergie de surface de lactose brut ou micronisé au cours du stockage à humidité élevée et de relier ces changements aux propriétés de la poudre. Les énergies de surface, l’aptitude à la cohésion et l’hétérogénéité de surface ont été déterminées par CGI. La morphologie de surface, les distributions de tailles de particules et la teneur en lactose amorphe ont été déterminées respectivement par microscopie électronique à balayage, diffraction laser et mesure des particules en temps de vol et sorption de vapeur en dynamique. Les énergies de surface (dispersive, polaire et totale) étaient plus élevées pour le lactose micronisé que pour le lactose brut. Les profils d’hétérogénéité de surface indiquaient un plus grand nombre de sites d’énergie sur le lactose micronisé. Aucun des lactoses ne présentait de teneur en lactose amorphe détectable. Après stockage à 75 % d’humidité relative, la taille des particules augmentait et l’étendue de distribution diminuait pour le lactose micronisé indiquant la formation de petits agglomérats. L’aptitude du lactose micronisé aggloméré à se disperser diminuait après stockage indiquant la formation d’agglomérats forts au cours du stockage. Les énergies de surface dispersives du lactose brut et du lactose micronisé diminuaient significativement après stockage (P < 0,05), tandis que les énergies de surface polaires augmentaient significativement (P < 0,05). L’énergie de surface totale et l’aptitude à la cohésion du lactose micronisé augmentaient. La CGI était utile pour différencier les poudres de lactose; l’énergie de surface totale et l’aptitude à la cohésion du lactose micronisé étaient plus élevées que celles du lactose brut. L’augmentation de l’énergie de surface totale et l’aptitude à la cohésion du lactose micronisé après stockage étaient bien corrélées à la formation d’agglomérats plus forts, mais ces changements seraient plus àrelier à l’adsorption d’humidité qu’aux changements d’énergie de surface inhérents au lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adi H., Larson I., Chiou H., Young P., Traini D., Stewart P., Agglomerate strength and dispersion of salmeterol xinafoate from powder mixtures for inhalation, Pharm. Res. 23 (2006) 2556–2565.

    Article  CAS  Google Scholar 

  2. Ahfat N., Buckton G., Burrows R., Ticehurst M., An exploration of inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging data, Eur. J. Pharm. Sci. 9 (2000) 271–276.

    Article  CAS  Google Scholar 

  3. Balard H., Saada A., Siffert B., Papirer E., Influence of water on the retention of organic probes on clays studied by IGC, Clays Clay Miner. 45 (1997) 489–495.

    Article  CAS  Google Scholar 

  4. Borgstrom L., Bisgaard H., O’Callaghan C., Pedersen S., Dry powder inhalers, in: Bisgaard H., O’Callaghan C., Smaldone G.C. (Eds.), Drug Delivery to the Lung, Marcel Dekker, New York, USA, 2002, pp. 421–448.

    Google Scholar 

  5. Briggner L., Buckton G., Bystrom K., Darcy P., The use of isothermal microcalorimetry in the study of changes in crystallinity induced during the processing of powders, Int. J. Pharm. 105 (1994) 125–135.

    Article  CAS  Google Scholar 

  6. Callahan J., Cleary G., Elefant M., Kaplan G., Kensler T., Nash R., Equilibrium moisture content of pharmaceutical excipients, Drug Dev. Ind. Pharm. 8 (1982) 355–369.

    Article  CAS  Google Scholar 

  7. Comte S., Calvet R., Dodds J., Balard H., Surface properties of low specific surface powders using inverse gas chromatography, Powder Technol. 157 (2005) 39–47.

    Article  CAS  Google Scholar 

  8. Das S., Larson I., Young P., Stewart P., Influence of storage relative humidity on the dispersion of salmeterol xinafoate powders for inhalation, J. Pharm. Sci. 98 (2008) 1015–1027.

    Article  Google Scholar 

  9. Egawa H., Maeda S., Yonemochi E., Oguchi T., Yamamoto K., Nakai Y., Solubility parameter and dissolution behaviour of cephalexin powders with different crystallinity, Chem. Pharm. Bull. 40 (1992) 819–820.

    CAS  Google Scholar 

  10. Feeley J., York P., Sumby B., Dicks H., Determination of surface properties and flow characteristics of salbutamol sulphate before and after micronization, Int. J. Pharm. 172 (1998) 89–96.

    Article  CAS  Google Scholar 

  11. Florence A., Salole E., Changes in crystallinity and solubility on comminution of digoxin and observations on spironolactone, J. Pharm. Pharmacol. 28 (1976) 479–480.

    Google Scholar 

  12. Fowkes F., Attractive forces at interfaces, J. Ind. Eng. Chem. 56 (1964) 40–52.

    Article  CAS  Google Scholar 

  13. Grimsey I., Feeley J., York P., Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography, J. Pharm. Sci. 91 (2002) 571–583.

    Article  CAS  Google Scholar 

  14. Islam N., Stewart P., Larson I., Hartley P., Lactose modification by decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures? Pharm. Res. 21 (2004) 492–499.

    Article  CAS  Google Scholar 

  15. Louey M., Stewart P., Particle interactions involved in aerosol dispersion of ternary interactive mixtures, Pharm. Res. 19 (2002) 1524–1531.

    Article  CAS  Google Scholar 

  16. Lucas P., Anderson K., Staniforth J., Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers, Pharm. Res. 15 (1998) 562–569.

    Article  CAS  Google Scholar 

  17. Matthew J., Price R., The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations, Pharm. Res. 23 (2006) 1665–1674.

    Article  Google Scholar 

  18. Newell H., Buckton G., Butler D., Thielmann F., Williams D., The use of inverse gas chromatography to measure the surface energy of crystalline, amorphous and recently milled lactose, Pharm. Res. 18 (2001) 662–666.

    Article  CAS  Google Scholar 

  19. Newell H., Buckton G., Butler D., Thielmann F., Williams D., The use of inverse gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation, Int. J. Pharm. 217 (2001) 45–56.

    Article  CAS  Google Scholar 

  20. Ohta M., Buckton G., Determination of the changes in surface energetics of cefditoren pivoxil as a consequence of processing induced disorder and equilibration to different relative humidities, Int. J. Pharm. 269 (2004) 81–88.

    Article  CAS  Google Scholar 

  21. Podczeck F., Newton J., James M., Influence of relative humidity of storage air on the adhesion and autoadhesion of micronized particles to particulate and compacted powder surfaces, J. Colloid Interface Sci. 187 (1997) 484–491.

    Article  CAS  Google Scholar 

  22. Schultz J., Lavielle L., Interfacial properties of carbon fibre-epoxy matrix composites, in: Lloyd D., Ward T., Schreiber H. (Eds.), Inverse Gas Chromatography Characterisation of Polymers and Other Materials, ACS Symposium Ser. 391, American Chemical Society, Washington DC, USA, 1989, pp. 185–202.

    Chapter  Google Scholar 

  23. Schultz J., Lavielle L., Martin C., The role of interface in carbon fibre-epoxy composites, J. Adh. 23 (1987) 45–60.

    Article  CAS  Google Scholar 

  24. Sooben K., Buckton G., Newton J., The measurement of surface energies of materials used in wet granulation under dynamic and moist conditions, Pharm. Sci. Suppl. (2000) 2.

  25. Thielmann F., Pearse D., Determination of surface heterogeneity profiles on graphite by finite concentration inverse gas chromatography, J. Chromatogr. A 969 (2002) 323–327.

    Article  CAS  Google Scholar 

  26. Ticehurst M., York P., Rowe R., Dwivedi S., Characterisation of the surface properties of α-lactose monohydrate with inverse gas chromatography used to detect batch variation, Int. J. Pharm. 141 (1996) 93–99.

    Article  CAS  Google Scholar 

  27. Trowbridge L., Grimsey I., York P., Influence of milling on the surface properties of acetaminophen, Pharm. Sci. 1 (1998) 310.

    Google Scholar 

  28. Van Oss C., Good R., Chaudhury M., Additive and nonadditive surface tension components and the interpretation of contact angles, Langmuir 4 (1988) 884–891.

    Article  Google Scholar 

  29. Young P.M., Sung A., Traini D., Kwok P., Chiou H., Chan H.K., Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhaler carrier based systems, Pharm. Res. 24 (2007) 963–970.

    Article  CAS  Google Scholar 

  30. Zhu K., Tan R.B.H., Ng W.K., Shen S., Zhou Q., Heng P.W.S., Analysis of the influence of relative humidity on the moisture sorption of particles and the aerosolization process in a dry powder inhaler, Aerosol Sci. 39 (2008) 510–524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stewart.

About this article

Cite this article

Das, S., Larson, I., Young, P. et al. Understanding lactose behaviour during storage by monitoring surface energy change using inverse gas chromatography. Dairy Sci. Technol. 90, 271–285 (2010). https://doi.org/10.1051/dst/2009051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/dst/2009051

Navigation