Skip to main content
  • Original Article
  • Published:

Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer

Propriétés des panneaux d’écorce externe de bouleau blanc (Betula papyrifera) avec renfort de particules grossières de bois dans la couche médiane

Abstract

  • • This study proposes substituting traditional raw materials in the surface layers of wood particle-boards with the water resistant white birch (Betula papyrifera) outer bark particles, which can help improve the dimensional stability of manufactured mixed particleboards, thereby alleviating shortages of raw material in a cost-efficient manner.

  • • Mixed particleboards were fabricated in the laboratory using untreated or alkali treated white birch outer bark particles as substitute material. These particles were resinated successively with three percentages of phenol-formaldehyde resin. Overall, the results of this study clearly demonstrate that the panels could be manufactured using up to 45% of the proposed substitute material and still maintain the required mechanical and physical properties.

  • • Alkali treatment was used to remove natural wax from bark particles surface which hinders resin adhesion. This treatment negatively affected mechanical and physical properties of finished panels and the variation of phenol-formaldehyde resin percentage in the bark particles significantly affected only their hardness.

  • • Panel with untreated bark particles in the surface layers, resinated with 5% phenol-formaldehyde resin was selected as the best with the help of a statistical analysis carried out in a factorial complete block design, especially from the dimensional stability criterion.

Résumé

  • • L’objet de cette étude est de substituer la matière première traditionnelle dans les couches couvrantes des panneaux de particules conventionnelles par les particules hydrophobes d’écorce externe de bouleau blanc (Betula papyrifera) qui peuvent aider à améliorer la stabilité dimensionnelle des panneaux mixtes produits et ainsi permettre d’alléger la pénurie de la matière première d’une manière rentable.

  • • Les panneaux de particules mixtes ont été fabriqués à l’échelle du laboratoire en utilisant les particules d’écorce externe de bouleau blanc non traitées ou traitées à la soude comme matériel de substitution. Ces particules ont été encollées successivement avec trois pourcentages de colle phénol-formaldéhyde. Les résultats de cette étude démontrent d’un bout à l’autre que les panneaux pourraient être fabriqués en utilisant jusqu’à 45 % de matière de substitution proposée et maintenir toujours les exigences des propriétés mécaniques et physiques.

  • • Le traitement à la soude a été utilisé afin d’enlever la cire naturelle de la surface des écorces qui empêche l’adhésion de la colle. Ce traitement a affecté négativement les propriétés mécaniques et physiques des panneaux produits et la variation du pourcentage de la colle phénol-formaldéhyde dans les particules d’écorce a affecté leur dureté de manière hautement significative.

  • • Le panneau avec les particules d’écorce non traitées dans les couches couvrantes et encollées avec 5 % de phénol-formaldéhyde a été sélectionné comme le meilleur à l’aide d’une analyse statistique faite dans un plan factoriel en blocs complets, en se basant sur le critère de la stabilité dimensionnelle.

References

  • Allison F.E., 1965. Decomposition of wood and bark sawdust in soil: Nitrogen requirements and effects on plants. USDA Agr. Res. Serv. Tech. Bull. No. 1332, 58 p.

  • American Society for Testing and Material 2005. D 1037–99. In: Standard test methods for evaluating properties of wood-based fiber and particle panel materials. ASTM Annual Book of Standards. Volume 04.10 West Conshohocken, Pa, pp.140–170.

  • Anonymous, 2005. Données sur le problème des écorces. Ministère des Ressources Naturelles du Québec (MRNQ).

  • ANSI, 1999. American National Standard Institute. ANSI A208.1-1999, Particleboard 11p.

  • Blanchet P., Cloutier A., and Riedl B., 2000. Particleboard made from hammer milled black spruce residues. Wood Sci. Technol. 34: 11–19.

    Article  CAS  Google Scholar 

  • Boquillon N., Elbez G., and Schonfeld U., 2004. Properties of wheat straw particleboards boned with different types of resin. J. Wood Sci. 50: 230–235.

    Article  CAS  Google Scholar 

  • Chow P., 1976. Properties of medium-density, dry-formed fiberboard from seven hardwood residues and bark. For. Prod. J. 26(5): 48–55.

    Google Scholar 

  • Collin J., 2003. Dispositifs expérimentaux. BVG-60678. Notes de cours, Université Laval Dost W.A., 1971. Redwood bark fiber in particleboard. For. Prod. J. 21(10): 38–43.

    Google Scholar 

  • Fengel D. and Wegener G., 1989. Wood — Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, New York, pp. 240–267.

    Google Scholar 

  • Gersonde M. and Deppe H.J., 1968. Möglichkeiten und Verfahren Technische Voraussetzungen einer Schutzbehandlung von Holzspanplatten gegen holzzerstörende Pilze. Holzforschung 55: 876–877.

    Google Scholar 

  • Hergert H.L., 1958. Chemical composition of cork from white fir bark. For. Prod. J. 8: 335–339.

    CAS  Google Scholar 

  • Holloway P.J., 1972. The composition of suberin from the corks of Quercus suber L. and Betula pendula Roth. Chem. Physiol. Lipids 9: 158–170.

    Article  CAS  Google Scholar 

  • Kozlowski R. and Helwig M., 1998. Lignocellulosic polymer composite. In: Prasad P.N. (Ed.), Science and Technology of Polymer and Advanced Materials, Plenum Press, New York, pp. 679–698.

    Google Scholar 

  • Lehmann W.F. and Geimer R.L., 1976. Properties of structural particleboards from Douglas-fir forest residues. For. Prod. J. 24(10): 17–25.

    Google Scholar 

  • Lundqvist E.K. and Back L.E., 1976. The use of bark for wood based panels. Critical evaluation. Swedish Forest Products Research Laboratory, Stockholm. Presented at ECE/FAO, Timber Division, Symposium on extending the use of wood residues, in Bucarest, Romania, September–October 1, 1976.

  • Maloney T.M., 1973. Bark boards from four west coast softwood species. For. Prod. J. 23(8): 30–38.

    Google Scholar 

  • Montgomery D.C., 2005. Design and analysis of experiments. 6th ed., Arizona State University.

  • Nemli G. and Çolakoglu G., 2005. Effects of mimosa bark usage on some properties of particleboard. Turk J. Agric. For. 29: 227–230.

    Google Scholar 

  • Nemli G., Gezer E.D., Yildiz S., Temiz A., and Aydin A., 2006. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresour. Technol. 97: 2059–2064.

    Article  PubMed  CAS  Google Scholar 

  • Pedieu R., Riedl B., and Pichette A., 2008. Measurement of wood and bark particles acidity and their impact on the curing of ureaformaldehyde resin during the hot pressing of mixed panels. Holz Roh-Werkst. 66: 113–117.

    Article  CAS  Google Scholar 

  • Roffael E., Schneider T., Behn C., and Pedieu R., 2004. Alternativen zu OSB-Strands aus Industrieholz. Holz-Zentralblatt: unabhängiges Organ für die Forst- und Holzwirtschaft, 130(48): 633–634.

    Google Scholar 

  • Sampathrajan A., Vijayaraghavan N.C., and Swaminathan K.R., 1992. Mechanical and thermal properties of particleboards made from farm residues. Bioresour. Technol. 40: 249–251.

    Article  CAS  Google Scholar 

  • Schmidt L.E., Hall J.H., Gertjejansen O.R., Hermann J., and Hall H., 1978. Strength reductions in particleboard caused by fungi. For. Prod. J. 28(2): 26–31.

    Google Scholar 

  • Smith J.G.H. and Kozak A., 1967. Thickness and percentage of bark of the commercial trees of British Columbia. Faculty of forestry, University of British Columbia, Vancouver, 27 p.

    Google Scholar 

  • Swan E.P., 1968. Alkaline ethanolysis of. extractive-free western red cedar bark. Tappi 51(7): 301–304.

    CAS  Google Scholar 

  • Villeneuve E., 2004. Utilisation de l’écorce du peuplier faux-tremble pour la fabrication des panneaux de particules. Mémoire de maîtrise, département des sciences du bois et de la forêt, Université Laval, Québec.

    Google Scholar 

  • Volz K.R., 1973. Production and properties of boards from spruce, pine, and beech bark. Holz Roh-Werkst. 31: 221–229.

    Article  Google Scholar 

  • Willeitner H., 1956. Über die Mykologische Prüfung von Holzspanplatten. Materialpruf. 7: 129–134.

    Google Scholar 

  • Wisherd K.D. and Wilson J.B., 1979. Bark as supplement to wood furnish for particleboard. For. Prod. J. 29(2): 35–39.

    CAS  Google Scholar 

  • Woodson G., 1975. Effects of bark, density profile, and resin content on medium density fiberboards from southern hardwoods. For. Prod. J. 26(2): 39–42.

    Google Scholar 

  • Xing C., Deng J., Zhang S.Y., Riedl B., and Cloutier A., 2006. Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada. For. Prod. J. 56(3): 64–69.

    Google Scholar 

  • Youngquist J.A., 1995. Unlikely partners? The marriage of wood and non-wood materials. For. Prod. J. 45(10): 25–30.

    CAS  Google Scholar 

  • Youngquist J.A., English B.E., Spelter H., and Chow P., 1993a. Agriculture fibers in composition panels, In: Maloney Thomas M. (ed.), Proceedings, 27th international particleboard/composite materials symposium, 1993 March 30–April 1, Pullman, WA, Washington State University, pp. 133–135.

    Google Scholar 

  • Youngquist J.A., Myers G.E., Muehl J.M., Krzysik A.M., and Clemens C.M., 1993b. Composites from recycled wood and plastics. Final Rep., US Environmental Protection Agency, Project IAG DW12934608-2. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory.

  • Youngquist J.A., English B.E., Scharmer R.C., Chow P., and Shook S., 1994. Literature review on use of non-wood plants fibers for building materials and panels. Gen. Tech. Rep. FPL-GTR-80. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Riedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedieu, R., Riedl, B. & Pichette, A. Properties of white birch (Betula papyrifera) outer bark particleboards with reinforcement of coarse wood particles in the core layer. Ann. For. Sci. 65, 701 (2008). https://doi.org/10.1051/forest:2008053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2008053

Keywords

Mots-clés