Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach

Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.

References

    1. 1)
      • M.A. Hibbs , N.C. Dirksen , K. Li . Visualization methods for statistical analysis of microarray clusters. BMC Bioinform.
    2. 2)
      • M. Schena , D. Shalon , R.W. Davis , P.O. Brown . Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science , 467 - 470
    3. 3)
      • B.N. Kholodenko , E.D. Sontag . (2002) Determination of functional network structure from local parameter dependence data.
    4. 4)
      • M. Levine , E.H. Davidson . Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA , 14 , 4936 - 4942
    5. 5)
      • K. Basso , A.A. Margolin , G. Stolovitzky , U. Klein , R. Dalla-Favera , A. Califano . Reverse engineering of regulatory networks in human B cells. Nat. Genet. , 4 , 382 - 390
    6. 6)
      • R. Somogyi , C.A. Sniegoski . Modelling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity , 45 - 63
    7. 7)
      • S.P. Gygi , Y. Rochon , B.R. Franza , R. Aebersold . Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. , 1720 - 1730
    8. 8)
      • J.J. Kohler , A. Schepartz . Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization. Biochemistry-US , 1 , 130 - 142
    9. 9)
      • T.S. Gardner , D. di Bernardo , D. Lorenz , J.J. Collins . Inferring genetic networks and identifying compound mode of action via expression profiling. Science , 5629 , 102 - 105
    10. 10)
      • P. Brazhnik . Inferring gene networks from steady-state response to single-gene perturbations. J. Theor. Biol. , 427 - 440
    11. 11)
      • B.N. Kholodenko , O.V. Demin , G. Moehren , J.B. Hoek . Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. , 42 , 30169 - 30181
    12. 12)
      • L. Joos , E. Eryüksel , M.H. Brutsche . Functional genomics and gene micro arrays – the use in research and clinical medicine. Swiss Med. Wkly , 31 - 38
    13. 13)
      • M.B. Eisen , P.T. Spellman , P.O. Brown , D. Botstein . Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA , 14863 - 14868
    14. 14)
      • K. Sachs , O. Perez , D. Pe'er , D.A. Lauffenburger , G.P. Nolan . Causal protein-signaling networks derived from multiparameter single-cell data. Science , 523 - 529
    15. 15)
      • P. Brazhnik , A. de la Fuente , P. Mendes . Gene networks: how to put the function in genomics. Trends Biotechnol. , 467 - 472
    16. 16)
      • B. Schwikowski , P. Uetz , S. Fields . A network of protein–protein interactions in yeast. Nat. Biotechnol. , 12 , 1257 - 1261
    17. 17)
    18. 18)
      • H. Kitano . Perspectives on systems biology. New Gener. Comput. , 199 - 216
    19. 19)
      • C.C. Xiang , Y. Chen . cDNA microarray technology and its applications. Biotechnol. Adv. , 35 - 46
    20. 20)
      • J. Quackenbush . Computational analysis of microarray data. Nat. Rev. Genet. , 418 - 427
    21. 21)
    22. 22)
      • C.T. Harbison , D.B. Gordon , T.I. Lee . Transcriptional regulatory code of a eukaryotic genome. Nature , 7004 , 99 - 104
    23. 23)
      • B.N. Kholodenko , A. Kiyatkin , F.J. Bruggeman , E. Sontag , H.V. Westerhoff , J.B. Hoek . Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci. USA , 12841 - 12846
    24. 24)
      • A. de la Fuente , P. Brazhnik , P. Mendes . Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. , 395 - 398
    25. 25)
      • D. Noble . The rise of computational biology. Nat. Rev. Mol. Cell. Biol. , 459 - 463
    26. 26)
      • L.H. Hartwell , J.J. Hopfield , S. Leibler , A.W. Murray . From molecular to modular cell biology. Nature , C47 - C52
    27. 27)
      • T.R. Hughes , M.J. Marton , A.R. Jones , C.J. Roberts , R. Stoughton , C.D. Armour , H.A. Bennett , E. Coffey , H. Dai , Y.D. He , M.J. Kidd , A.M. King , M.R. Meyer , D. Slade , P.Y. Lum , S.B. Stepaniants , D.D. Shoemaker , D. Gachotte , K. Chakraburtty , J. Simon , M. Bard , S.H. Friend . Functional discovery via a compendium of expression profiles. Cell , 1 , 109 - 126
    28. 28)
      • S. Huang , D.E. Ingber . Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exper. Cell Res. , 91 - 103
    29. 29)
      • D.E. Bassett , M.B. Jr., Eisen , M.S. Boguski . Gene expression informatics – it's all in your mine. Nat. Genet. Suppl. , 51 - 55
    30. 30)
      • T. Ideker , V. Thorsson , J.A. Ranish , R. Christmas , J. Buhler , J.K. Eng , R. Bumgarner , D.R. Goodlett , R. Aebersold , L. Hood . Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science , 929 - 934
    31. 31)
      • J.M. Haugh , A. Wells , D.A. Lauffenburger . Mathematical modeling of epidermal growth factor receptor signaling through the phospholipase C pathway: mechanistic insights and predictions for molecular interventions. Biotechnol. Bioeng. , 225 - 238
    32. 32)
      • D.E. Zak , G.E. Gonye , J.S. Schwaber , F.J. Doyle . Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res. , 2396 - 2405
    33. 33)
      • V. Hatzimanikatis , K. Lee . Dynamical analysis of gene networks requires both mRNA and protein expression information. Metab. Eng. , 275 - 281
    34. 34)
      • S. Datta , S. Datta . Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics , 4 , 459 - 466
    35. 35)
      • E.J. Crampin , S. Schnell , P.E. McSharry . Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog. Biophys. Mol. Biol. , 1 , 77 - 112
    36. 36)
      • S. Tavazoie , J.D. Hughes , M.J. Campbell , R.J. Cho , G.M. Church . Systematic determination of genetic network architecture. Nat. Genet. , 281 - 285
    37. 37)
      • M. Andrec , B.N. Kholodenko , R.M. Levy , E. Sontag . Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J. Theor. Biol. , 427 - 441
    38. 38)
      • D.A. Lauffenburger . Cell signaling pathways as control modules: complexity for simplicity?. Proc. Natl. Acad. Sci. USA , 5031 - 5033
    39. 39)
      • F.T. Kenney , K.L. Lee . Turnover of gene products in the control of gene expression. Bioscience , 3 , 181 - 184
    40. 40)
      • J.J. Tyson , K. Chen , B. Novak . Network dynamics and cell physiology. Nat. Rev. Mol. Cell. Biol. , 908 - 916
    41. 41)
      • M.W. Covert , E.M. Knight , J.L. Reed , M.J. Herrgard , B.O. Palsson . Integrating high-throughput and computational data elucidates bacterial networks. Nature , 92 - 96
    42. 42)
      • T. Chevalier , I. Schreiber , J. Ross . Toward a systematic determination of complex-reaction mechanisms. J. Phys. Chem. , 6776 - 6787
    43. 43)
      • D.J. Lockhart , H. Dong , M.C. Byrne , M.T. Follettie , M.V. Gallo , M.S. Chee , M. Mittmann , C. Wang , M. Kobayashi , H. Horton , E.L. Brown . Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. , 1675 - 1680
    44. 44)
      • S.A. Kauffman . (1993) The origins of order.
    45. 45)
      • T. Herdegen , J.D. Leah . Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos, and Krox, and CREB/ATF proteins. Brain Res. Rev. , 370 - 490
    46. 46)
      • J. Hasty , D. McMillen , F. Isaacs , J.J. Collins . Computational studies of gene regulatory networks: in numero molecular biology. Nature Genet. , 268 - 279
    47. 47)
      • T.I. Lee , N.J. Rinaldi , F. Robert . Transcriptional regulatory networks in Saccharomyces cerevisiae. Science , 799 - 804
    48. 48)
      • R. Ouali , M.C. Berthelon , J.M. Saez . Angiotensin II receptor subtypes AT1 and AT2 are down regulated by Angiotensin II through AT1 receptor by different mechanisms. Endocrinology , 2 , 725 - 733
    49. 49)
      • J. Yu , V.A. Smith , P.P. Wang , A.J. Hartemink , E.D. Jarvis . Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics , 18 , 3594 - 3603
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050090
Loading

Related content

content/journals/10.1049/ip-syb_20050090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address