Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems

Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of wireless resource management in broadband cognitive OFDMA networks is addressed. The objective is to maximise the multiple cognitive users' weighted rate sum by jointly adjusting their rate, frequency and power resource, under the constraints of multiple primary users' interference temperatures. First, based on two interpretations of the interference temperatures, the problem studied is formulated as two nonlinear and non-convex optimisation problems. Secondly, these two problems are analysed, and a centralised greedy algorithm is proposed to solve one problem, as well as a centralised algorithm based on Lagrangian duality theory for the other. The two centralised algorithms are shown to be optimal and both have polynomial time complexities. Finally, it is shown that the two centralized algorithms can be distributively implemented by introducing the idea of virtual clock. And the distributed algorithms can be interpreted as an interesting distributed negotiated secondary market approach. It is believed that the work will provide a good reference for the emerging cognitive network protocol design.

References

    1. 1)
      • A. Ghasemi , E.S. Sousa . Fundamental limits of spectrum-sharing in fading environments. IEEE Trans. Wirel. Commun. , 649 - 658
    2. 2)
      • Yates, R.D., Raman, C., Mandayam, N.B.: `Fair and efficient scheduling of variable rate links via a spectrum server', Proc. IEEE ICC'06, June 2006, 11, p. 5246–5251.
    3. 3)
      • `Spectrum policy task force', Report ET Docket, November 2002, Federal Communications Commission.
    4. 4)
      • J. Huang , R.A. Berry , M.L. Hong . Auction-based spectrum sharing. Mob. Netw. Appl. , 405 - 418
    5. 5)
      • A.J. Goldsmith , S. Chua . Vairable-rate variable-power MQAM for fading channels. IEEE Trans. Commun. , 1218 - 1230
    6. 6)
      • Sharma, M., Sahoo, A., Nayak, K.: `Channel selection under interference temperature model in multi-hop cognitive mesh networks', IEEE Int. Conf. Dynamic Spectrum Access Netwroks (DYSPAN), April 2007.
    7. 7)
      • T. Clancy . Formalizing the interference temperature model. Wirel. Commun. Mob. Comput. , 9 , 1077 - 1086
    8. 8)
      • C.Y. Wong , R.S. Cheng , K.B. Letaief , R.D. Murch . Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Sel. Areas Commun. , 1747 - 1758
    9. 9)
      • R. Cendrillon , W. Yu , M. Moonen , J. Verlinden , T. Bostoen . Optimal multiuser spectrum balancing for digital subscriber lines. IEEE Trans. Commun. , 922 - 933
    10. 10)
      • M.H.M. Costa . Writing on dirty paper. IEEE Trans. Inf. Theory , 439 - 441
    11. 11)
      • N. Devroye , P. Mitran , V. Tarokh . Achievable rates in cognitive radio channels. IEEE Trans. Inf. Theory , 1813 - 1827
    12. 12)
      • Y. Xing , C.N. Mathur , M.A. Haleem , R. Chandramouli , K.P. Subbalakshmi . Dynamic spectrum access with QoS and interference temperature constraints. IEEE Trans. Mob. Comput. , 423 - 432
    13. 13)
      • Brodersen R.W., Wolisz A., Cabric D., Mishra S.M., Willkomm D.: ‘Corvus: a cognitive radio approach for usage of virtual unlicensed spectrum’, UC Berkeley White Paper, July 2004.
    14. 14)
      • Mitola, J.: `Cognitive radio: An integrated agent architecture for software defined radio', 2000, Doctor of Technology, Royal Institute Technology (KTH), Stockholm, Sweden.
    15. 15)
      • S. Boyd , L. Vandenberghe . (2004) Convex Optimization.
    16. 16)
      • A. Bletsas , A. Khisti , D.P. Reed , A. Lippman . A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. , 659 - 672
    17. 17)
      • J. Mitola , G.Q. Maguire . Cognitive radio: Making software radios more personal. IEEE Pers. Commun. , 13 - 18
    18. 18)
      • W. Yu , R. Lui . Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. , 1310 - 1322
    19. 19)
      • A. Jovicic , P. Viswanath . Cognitive radio: An information-theoretic perspective. Proc. IEEE ISIT'06 , 2413 - 2417
    20. 20)
      • `Cognitive radio technologies proceeding', no. 03-108, Report ET Docket, 2003, Federal Communications Commission.
    21. 21)
      • G. Bianchi . IEEE 802.11-saturation throughput analysis. IEEE Commun. Lett. , 318 - 320
    22. 22)
      • M.R. Garey , D. Johnson . (1979) Computers and intractability: a guide to the theory of NP-completeness.
    23. 23)
      • S. Haykin . Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. , 201 - 220
    24. 24)
      • K.R. Kolodziejski , J.W. Betz . Detection of weak random signals in IDD non-Gaussian noise. IEEE Trans. Commun. , 222 - 230
    25. 25)
      • P. Viswanath , D. Tse , R. Laroia . Opportunistic beamforming using dumb antennas. IEEE Trans. Inf. Theory , 1277 - 1294
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070358
Loading

Related content

content/journals/10.1049/iet-com_20070358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address