Issue 14, 2024

A WOx/MoOx hybrid oxide based SERS FET and investigation on its tunable SERS performance

Abstract

Active control of the surface-enhanced Raman scattering (SERS) enhancement shows great potential for realizing smart detection of different molecules. However, conventional methods usually involve time-consuming structural design or a sophisticated fabrication process. Herein, we reported an electrically tunable field effect transistor (FET) comprising a WOx/MoOx hybrid as the SERS active layer. In the experiment, WOx/MoOx hybrids were first prepared by mixing different molar ratios of WOx and MoOx oxides. Then, R6G molecules were used as Raman reporters, showing that the intensity of the SERS signal observed on the most optimal hybrids (molar ratio = 1 : 3) could be increased by two times as high as that observed on a single WOx or MoOx based substrate, which was ascribed to enhanced charge transfer efficiency by the constructed nano-heterojunction between the WOx and MoOx oxides. Thereafter, a back-gate FET was fabricated on a SiO2/Si substrate, and the most optimal WOx/MoOx hybrid was deposited as the gate channel and the SERS active layer. After that, a series of gate biases (from −15 V to 15 V) were implemented to actively tune the SERS performance of the FET. It is evident that the SERS EF can be further tuned from 2.39 × 107 (−15 V) to 6.55 × 107 (+10 V), which is ∼7.4/4.1 times higher than that observed on the pure WOx device (8.81 × 106) or pure MoOx (1.61 × 107) device, respectively. Finally, the mechanism behind the electrical tuning strategy was investigated. It is revealed that a positive voltage would bend the conduction band down, which increased the electron density near the Fermi level. Consequently, it triggered the resonance charge transfer and significantly improved the SERS performance. In contrast, a negative gate voltage attracted the holes to the Fermi level, which deferred the charge transfer process, and caused the reduction of the SERS enhancement.

Graphical abstract: A WOx/MoOx hybrid oxide based SERS FET and investigation on its tunable SERS performance

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2024
Accepted
10 Mar 2024
First published
13 Mar 2024

Phys. Chem. Chem. Phys., 2024,26, 10814-10823

A WOx/MoOx hybrid oxide based SERS FET and investigation on its tunable SERS performance

K. Yuan, Q. Qian, M. Wu, B. Wang, S. Zeng, D. Chen, M. D. Birowosuto, D. S. Ang and C. Gu, Phys. Chem. Chem. Phys., 2024, 26, 10814 DOI: 10.1039/D4CP00641K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements