Issue 21, 2022

Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex

Abstract

The 1 : 1 : 1 reaction of YbCl3·6H2O, K3[Co(CN)6] and bpyO2 in H2O has provided access to a complex with formula [YbCo(CN)6(bpyO2)2(H2O)3]·4H2O (1) in a very good yield while its structure has been determined by single-crystal X-ray crystallography and characterised based on elemental analyses and IR spectra. Magnetic susceptibility studies showed the complex to be a field induced single molecule magnet, as confirmed by μ-SQUID measurements. CASSCF calculations confirm the existence of a mJ = 7/2 ground state, with rather large transverse components, responsible for the fast relaxation characteristic of compound 1 at zero DC field, which is reduced upon application of DC fields. Moreover, a combination of luminescence studies along with CASSCF calculation allows the identification of the band structure of the complex, which is ultimately related to its electronic properties. Compound 1 operates as a luminescent thermometer in the 125–300 K range with a maximum relative thermal sensitivity of ≈0.1% K−1 at 180 K.

Graphical abstract: Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2022
Accepted
10 May 2022
First published
10 May 2022

Dalton Trans., 2022,51, 8208-8216

Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex

K. Karachousos-Spiliotakopoulos, V. Tangoulis, N. Panagiotou, A. Tasiopoulos, E. Moreno-Pineda, W. Wernsdorfer, M. Schulze, A. M. P. Botas and L. D. Carlos, Dalton Trans., 2022, 51, 8208 DOI: 10.1039/D2DT00936F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements