Issue 11, 2021

Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics

Abstract

Lymph transport inside lymphatic vessels is highly complex and not yet fully understood. So far, a consensus has not been reached among existing analytical models on how spatiotemporal coordination of contracting adjacent lymphangions affects lymph transport. To understand complex lymph transport, we created a novel microfluidic valvular chip with flexible bicuspid valves and segmental pneumatic pumps based on a microfluidic device with an inside 3D structure made of hydrogels. Inside the chip, water moved unidirectionally when the microfluidic channel was locally compressed, with its velocity profile closely resembling the waveform of lymph observed in vivo. Furthermore, for a systematic and mechanistic study, we constructed a numerical model based on fluid–structure interaction and validated the model via demonstration of similarities in water transport characteristics between the model and the chip. Using this model, we examined various mechanical and time-dependent parameters, such as period, phase delay, sequence, and strength of contractions, valve compliance, fluid viscosity, and pressure differences, for their effects on water transport. Although our model is simplified, it enabled a parametric study that helped clarify the mechano-temporal correlations between compressions of adjacent chambers via transmissions of hydrodynamic forces, which regulate complex lymph transport. Moreover, our chip demonstrated technical advances that enable unidirectional discrete movement of fluid in the picoliter range by phenumatic pumping. The velocity profile is also similar to the pulse waveform of arteries under pathological conditions such as increased aortic stiffness, allowing our chip to be used for in vitro mechanobiology studies of endothelial cells.

Graphical abstract: Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2021
Accepted
21 Apr 2021
First published
22 Apr 2021

Lab Chip, 2021,21, 2283-2293

Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics

J. In, J. Ryu, H. Yu, D. Kang, T. Kim and J. Kim, Lab Chip, 2021, 21, 2283 DOI: 10.1039/D1LC00022E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements