Issue 38, 2021

Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties

Abstract

As nucleobases in RNA and DNA, uracil and 5-methyluracil represent a recognized class of bioactive molecules and versatile ligands for coordination compounds with various biofunctional properties. In this study, 6-chloro-3-methyluracil (Hcmu) was used as an unexplored building block for the self-assembly generation of a new bioactive copper(II) complex, [Cu(cmu)2(H2O)2]·4H2O (1). This compound was isolated as a stable crystalline solid and fully characterized in solution and solid state by a variety of spectroscopic methods (UV-vis, EPR, fluorescence spectroscopy), cyclic voltammetry, X-ray diffraction, and DFT calculations. The structural, topological, H-bonding, and Hirshfeld surface features of 1 were also analyzed in detail. The compound 1 shows a distorted octahedral {CuN2O4} coordination environment with two trans cmu ligands adopting a bidentate N,O-coordination mode. The monocopper(II) molecular units participate in strong H-bonding interactions with water molecules of crystallization, leading to structural 0D → 3D extension into a 3D H-bonded network with a tfz-d topology. Molecular docking and ADME analysis as well as antibacterial and antioxidant activity studies were performed to assess the bioactivity of 1. In particular, this compound exhibits a prominent antibacterial effect against Gram negative (E. coli, P. aeruginosa) and positive (S. aureus, B. cereus) bacteria. The obtained copper(II) complex also represents the first structurally characterized coordination compound derived from 6-chloro-3-methyluracil, thus introducing this bioactive building block into a family of uracil metal complexes with notable biofunctional properties.

Graphical abstract: Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2021
Accepted
02 Sep 2021
First published
02 Sep 2021

Dalton Trans., 2021,50, 13533-13542

Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties

B. Kumar, T. Das, S. Das, W. Maniukiewicz, D. S. Nesterov, A. M. Kirillov and S. Das, Dalton Trans., 2021, 50, 13533 DOI: 10.1039/D1DT02018H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements